Raoul Bricard

Raoul Bricard (23 March 1870 – 26 November 1943) was a French engineer and a mathematician. He is best known for his work in geometry, especially descriptive geometry and scissors congruence, and kinematics, especially mechanical linkages.

Raoul Bricard
Born(1870-03-23)23 March 1870
Died26 November 1943(1943-11-26) (aged 73)
Scientific career
FieldsMathematics

Biography

Bricard taught geometry at Ecole Centrale des Arts et Manufactures. In 1908 he became a professor of applied geometry at the National Conservatory of Arts and Crafts in Paris.[1] In 1932 he received the Poncelet Prize in mathematics from the Paris Academy of Sciences for his work in geometry.[2]

Work

In 1896 Bricard published a paper on Hilbert's third problem, even before the problem was stated by Hilbert.[3] In it he proved that mirror symmetric polytopes are scissors congruent, and proved a weak version of Dehn's criterion.

In 1897 Bricard published an important investigation on flexible polyhedra.[4] In it he classified all flexible octahedra, now known as Bricard octahedra.[5] This work was the subject of Henri Lebesgue's lectures in 1938.[6] Later Bricard discovered notable 6-bar linkages.[7][8]

Bricard also gave one of the first geometric proofs of Morley's trisector theorem in 1922.[9][10]

Books

Bricard authored six books, including a mathematics survey in Esperanto.[11] He is listed in Encyclopedia of Esperanto.[12]

Notes

  1. Science, vol. 28 (1908), p. 707.
  2. "Prize Awards of the Paris Academy of Sciences", Nature vol. 131 (1933) 174-175.
  3. R. Bricard, "Sur une question de géométrie relative aux polyèdres", Nouvelles annales de mathématiques, Ser. 3, Vol. 15 (1896), 331-334.
  4. R. Bricard, Mémoire sur la théorie de l’octaèdre articulé Archived 2011-07-17 at the Wayback Machine, J. Math. Pures Appl., Vol. 3 (1897), 113–150 (see also the English translation and an alternative scan).
  5. P. Cromwell, Polyhedra, Cambridge University Press, 1997.
  6. Lebesgue H. (1967). "Octaedres articules de Bricard". Enseign. Math. Series 2. 13 (3): 175–185. doi:10.5169/seals-41541.
  7. K. Wohlhart, The two types of the orthogonal Bricard linkage, Mechanism and machine theory, vol. 28 (1993), 809-817.
  8. Bricard 6 Bar Linkage Origami on YouTube.
  9. Guy Richard K. (2007). "The Lighthouse Theorem, Morley & Malfatti - A Budget of Paradoxes" (PDF). American Mathematical Monthly. 114 (2): 97–141. doi:10.1080/00029890.2007.11920398. JSTOR 27642143. S2CID 46275242. Archived from the original (PDF) on April 19, 2012.
  10. Alain Connes, "Symmetries", European Mathematical Society Newsletter No. 54 (December 2004).
  11. Raoul Bricard, from Open Library.
  12. Encyclopedia of Esperanto Archived 2008-12-18 at the Wayback Machine
  13. Emch, Arnold (1925). "Review: Petit Traité de Perspective by Raoul Bricard" (PDF). Bull. Amer. Math. Soc. 31 (9): 564–565. doi:10.1090/s0002-9904-1925-04125-7.

References

  • Laurent R., Raoul Bricard, Professeur de Géométrie appliquée aux arts, in Fontanon C., Grelon A. (éds.), Les professeurs du Conservatoire national des arts et métiers, dictionnaire biographique, 1794-1955, INRP-CNAM, Paris 1994, vol. 1, pp. 286–291.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.