Inverse distribution
In probability theory and statistics, an inverse distribution is the distribution of the reciprocal of a random variable. Inverse distributions arise in particular in the Bayesian context of prior distributions and posterior distributions for scale parameters. In the algebra of random variables, inverse distributions are special cases of the class of ratio distributions, in which the numerator random variable has a degenerate distribution.
Relation to original distribution
In general, given the probability distribution of a random variable X with strictly positive support, it is possible to find the distribution of the reciprocal, Y = 1 / X. If the distribution of X is continuous with density function f(x) and cumulative distribution function F(x), then the cumulative distribution function, G(y), of the reciprocal is found by noting that
Then the density function of Y is found as the derivative of the cumulative distribution function:
Examples
Reciprocal distribution
The reciprocal distribution has a density function of the form.[1]
where means "is proportional to". It follows that the inverse distribution in this case is of the form
which is again a reciprocal distribution.
Inverse uniform distribution
Parameters | |||
---|---|---|---|
Support | |||
CDF | |||
Mean | |||
Median | |||
Variance |
If the original random variable X is uniformly distributed on the interval (a,b), where a>0, then the reciprocal variable Y = 1 / X has the reciprocal distribution which takes values in the range (b−1 ,a−1), and the probability density function in this range is
and is zero elsewhere.
The cumulative distribution function of the reciprocal, within the same range, is
For example, if X is uniformly distributed on the interval (0,1), then Y = 1 / X has density and cumulative distribution function when
Inverse t distribution
Let X be a t distributed random variate with k degrees of freedom. Then its density function is
The density of Y = 1 / X is
With k = 1, the distributions of X and 1 / X are identical (X is then Cauchy distributed (0,1)). If k > 1 then the distribution of 1 / X is bimodal.
Reciprocal normal distribution
If variable follows a normal distribution , then the inverse or reciprocal follows a reciprocal normal distribution:[2]
If variable X follows a standard normal distribution , then Y = 1/X follows a reciprocal standard normal distribution, heavy-tailed and bimodal,[2] with modes at and density
and the first and higher-order moments do not exist.[2] For such inverse distributions and for ratio distributions, there can still be defined probabilities for intervals, which can be computed either by Monte Carlo simulation or, in some cases, by using the Geary–Hinkley transformation.[3]
However, in the more general case of a shifted reciprocal function , for following a general normal distribution, then mean and variance statistics do exist in a principal value sense, if the difference between the pole and the mean is real-valued. The mean of this transformed random variable (reciprocal shifted normal distribution) is then indeed the scaled Dawson's function:[4]
In contrast, if the shift is purely complex, the mean exists and is a scaled Faddeeva function, whose exact expression depends on the sign of the imaginary part, . In both cases, the variance is a simple function of the mean.[5] Therefore, the variance has to be considered in a principal value sense if is real, while it exists if the imaginary part of is non-zero. Note that these means and variances are exact, as they do not recur to linearisation of the ratio. The exact covariance of two ratios with a pair of different poles and is similarly available.[6] The case of the inverse of a complex normal variable , shifted or not, exhibits different characteristics.[4]
Inverse exponential distribution
If is an exponentially distributed random variable with rate parameter , then has the following cumulative distribution function: for . Note that the expected value of this random variable does not exist. The reciprocal exponential distribution finds use in the analysis of fading wireless communication systems.
Inverse Cauchy distribution
If X is a Cauchy distributed (μ, σ) random variable, then 1 / X is a Cauchy ( μ / C, σ / C ) random variable where C = μ2 + σ2.
Inverse F distribution
If X is an F(ν1, ν2 ) distributed random variable then 1 / X is an F(ν2, ν1 ) random variable.
Reciprocal of binomial distribution
No closed form for this distribution is known. An asymptotic approximation for the mean is known.[7]
where E[] is the expectation operator, X is a random variable, O() and o() are the big and little o order functions, n is the sample size, p is the probability of success and a is a variable that may be positive or negative, integer or fractional.
Reciprocal of triangular distribution
For a triangular distribution with lower limit a, upper limit b and mode c, where a < b and a ≤ c ≤ b, the mean of the reciprocal is given by
and the variance by
.
Both moments of the reciprocal are only defined when the triangle does not cross zero, i.e. when a, b, and c are either all positive or all negative.
Other inverse distributions
Other inverse distributions include
Applications
Inverse distributions are widely used as prior distributions in Bayesian inference for scale parameters.
References
- Hamming R. W. (1970) "On the distribution of numbers", The Bell System Technical Journal 49(8) 1609–1625
- Johnson, Norman L.; Kotz, Samuel; Balakrishnan, Narayanaswamy (1994). Continuous Univariate Distributions, Volume 1. Wiley. p. 171. ISBN 0-471-58495-9.
- Hayya, Jack; Armstrong, Donald; Gressis, Nicolas (July 1975). "A Note on the Ratio of Two Normally Distributed Variables". Management Science. 21 (11): 1338–1341. doi:10.1287/mnsc.21.11.1338. JSTOR 2629897.
- Lecomte, Christophe (May 2013). "Exact statistics of systems with uncertainties: an analytical theory of rank-one stochastic dynamic systems". Journal of Sound and Vibration. 332 (11): 2750–2776. doi:10.1016/j.jsv.2012.12.009.
- Lecomte, Christophe (May 2013). "Exact statistics of systems with uncertainties: an analytical theory of rank-one stochastic dynamic systems". Journal of Sound and Vibration. 332 (11). Section (4.1.1). doi:10.1016/j.jsv.2012.12.009.
- Lecomte, Christophe (May 2013). "Exact statistics of systems with uncertainties: an analytical theory of rank-one stochastic dynamic systems". Journal of Sound and Vibration. 332 (11). Eq.(39)-(40). doi:10.1016/j.jsv.2012.12.009.
- Cribari-Neto F, Lopes Garcia N, Vasconcellos KLP (2000) A note on inverse moments of binomial variates. Brazilian Review of Econometrics 20 (2)