Red-short carbon steel

Red-short, hot-short refers to brittleness of steels at red-hot temperatures. It is often caused by high sulfur levels, in which case it is also known as sulfur embrittlement.

Description

Iron or steel, when heated to above 460 °C (900 °F), glows with a red color. The color of heated iron changes predictably (due to black-body radiation) from dull red through orange and yellow to white, and can be a useful indicator of its temperature. Good quality iron or steel at and above this temperature becomes increasingly malleable and plastic. Iron or steel having too much sulfur, on the other hand, becomes crumbly and brittle. This is due to the sulfur forming iron sulfide/iron mixtures in the grain boundaries of the metal which have a lower melting point than the steel.[1]

When the steel is heated up and worked, the mechanical energy added to the workpiece increases the temperature further. The iron sulfide (FeS) or iron/iron sulfide alloy (which has an even lower melting point)[2] begins to melt, and the steel starts to separate at the grain boundaries. Steelmakers add manganese (Mn) to the steel when it is produced, to form manganese sulfide (MnS). Manganese sulfide inclusions have a higher melting point and do not concentrate at the grain boundaries. Thus, when the steel is later heated up and worked, the melting at the grain boundaries does not occur.

References

  1. Deev et al. (May–June 1982). "Role of iron sulfide in the formation of cracks in weld joints". Materials Science, Vol. 18, No. 3, pp. 109–112.
  2. Sachinath Mitra. High-pressure geochemistry and mineral physics. p. 1028.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.