Isotopes of rhenium

Naturally occurring rhenium (75Re) is 37.4% 185Re, which is stable (although it is predicted to decay), and 62.6% 187Re, which is unstable but has a very long half-life (4.12×1010 years).[4] Among elements with a known stable isotope, only indium and tellurium similarly occur with a stable isotope in lower abundance than the long-lived radioactive isotope.

Isotopes of rhenium (75Re)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
185Re 37.4% stable
186Re 3.7185 d β 186Os
ε 186W
187Re 62.6% 4.16×1010 y β 187Os
Standard atomic weight Ar°(Re)
  • 186.207±0.001
  • 186.21±0.01 (abridged)[2][3]

There are 36 other unstable isotopes recognized, the longest-lived of which are 183Re with a half-life of 70 days, 184Re with a half-life of 38 days, 186Re with a half-life of 3.7186 days, 182Re with a half-life of 64.0 hours, and 189Re with a half-life of 24.3 hours. There are also numerous isomers, the longest-lived of which are 186mRe with a half-life of 200,000 years and 184mRe with a half-life of 177.25 days.[5] All others have half-lives less than a day.

List of isotopes

Nuclide
[n 1]
Z N Isotopic mass (Da)
[n 2][n 3]
Half-life
[n 4][n 5]
Decay
mode

[n 6]
Daughter
isotope

[n 7][n 8]
Spin and
parity
[n 9][n 5]
Natural abundance (mole fraction)
Excitation energy[n 5] Normal proportion Range of variation
159Re[6] 75 84 21(4) μs p (92.5%) 158W (11/2−)
α (7.5%) 155Ta
160Re[7] 75 85 159.98212(43)# 611(7) μs p (89%) 159W (2−)
α (11%) 156Ta
160mRe[8] 185(21)# keV 2.8(1) μs IT 160Re (9+)
161Re 75 86 160.97759(22) 0.37(4) ms p 160W 1/2+
161mRe 123.8(13) keV 15.6(9) ms α 157Ta 11/2−
162Re 75 87 161.97600(22)# 107(13) ms α (94%) 158Ta (2−)
β+ (6%) 162W
162mRe 173(10) keV 77(9) ms α (91%) 158Ta (9+)
β+ (9%) 162W
163Re 75 88 162.972081(21) 390(70) ms β+ (68%) 163W (1/2+)
α (32%) 159Ta
163mRe 115(4) keV 214(5) ms α (66%) 159Ta (11/2−)
β+ (34%) 163W
164Re 75 89 163.97032(17)# 0.53(23) s α (58%) 160Ta high
β+ (42%) 164W
164mRe 120(120)# keV 530(230) ms (2#)−
165Re 75 90 164.967089(30) 1# s β+ 165W 1/2+#
α 161Ta
165mRe 47(26) keV 2.1(3) s β+ (87%) 165W 11/2−#
α (13%) 161Ta
166Re 75 91 165.96581(9)# 2# s β+ 166W 2−#
α 162Ta
167Re 75 92 166.96260(6)# 3.4(4) s α 163Ta 9/2−#
β+ 167W
167mRe 130(40)# keV 5.9(3) s β+ (99.3%) 167W 1/2+#
α (.7%) 163Ta
168Re 75 93 167.96157(3) 4.4(1) s β+ (99.99%) 168W (5+, 6+, 7+)
α (.005%) 164Ta
168mRe non-exist 6.6(15) s
169Re 75 94 168.95879(3) 8.1(5) s β+ (99.99%) 169W 9/2−#
α (.005%) 165Ta
169mRe 145(29) keV 15.1(15) s β+ (99.8%) 169W 1/2+#
α (.2%) 164Ta
170Re 75 95 169.958220(28) 9.2(2) s β+ (99.99%) 170W (5+)
α (.01%) 166Ta
171Re 75 96 170.95572(3) 15.2(4) s β+ 171W (9/2−)
172Re 75 97 171.95542(6) 15(3) s β+ 172W (5)
172mRe 0(100)# keV 55(5) s β+ 172W (2)
173Re 75 98 172.95324(3) 1.98(26) min β+ 173W (5/2−)
174Re 75 99 173.95312(3) 2.40(4) min β+ 174W
175Re 75 100 174.95138(3) 5.89(5) min β+ 175W (5/2−)
176Re 75 101 175.95162(3) 5.3(3) min β+ 176W 3+
177Re 75 102 176.95033(3) 14(1) min β+ 177W 5/2−
177mRe 84.71(10) keV 50(10) μs 5/2+
178Re 75 103 177.95099(3) 13.2(2) min β+ 178W (3+)
179Re 75 104 178.949988(26) 19.5(1) min β+ 179W (5/2)+
179m1Re 65.39(9) keV 95(25) μs (5/2−)
179m2Re 1684.59(14)+Y keV >0.4 μs (23/2+)
180Re 75 105 179.950789(23) 2.44(6) min β+ 180W (1)−
181Re 75 106 180.950068(14) 19.9(7) h β+ 181W 5/2+
182Re 75 107 181.95121(11) 64.0(5) h β+ 182W 7+
182m1Re 60(100) keV 12.7(2) h β+ 182W 2+
182m2Re 235.736(10)+X keV 585(21) ns 2−
182m3Re 461.3(1)+X keV 0.78(9) μs (4−)
183Re 75 108 182.950820(9) 70.0(14) d EC 183W 5/2+
183mRe 1907.6(3) keV 1.04(4) ms IT 183Re (25/2+)
184Re 75 109 183.952521(5) 35.4(7) d[5] β+ 184W 3(−)
184mRe 188.01(4) keV 177.25(7) d[5] IT (75.4%) 184Re 8(+)
β+ (24.6%) 184W
185Re 75 110 184.9529550(13) Observationally Stable[n 10] 5/2+ 0.3740(2)
185mRe 2124(2) keV 123(23) ns (21/2)
186Re 75 111 185.9549861(13) 3.7186(5) d β (93.1%) 186Os 1−
EC (6.9%) 186W
186mRe 149(7) keV 2.0(5)×105 y IT (90%) 186Re (8+)
β (10%) 186Os
187Re[n 11][n 12] 75 112 186.9557531(15) 41.2(2)×109 y[n 13] β[n 14] 187Os 5/2+ 0.6260(2)
188Re 75 113 187.9581144(15) 17.0040(22) h β 188Os 1−
188mRe 172.069(9) keV 18.59(4) min IT 188Re (6)−
189Re 75 114 188.959229(9) 24.3(4) h β 189Os 5/2+
190Re 75 115 189.96182(16) 3.1(3) min β 190Os (2)−
190mRe 210(50) keV 3.2(2) h β (54.4%) 190Os (6−)
IT (45.6%) 190Re
191Re 75 116 190.963125(11) 9.8(5) min β 191Os (3/2+, 1/2+)
192Re 75 117 191.96596(21)# 16(1) s β 192Os
193Re 75 118 192.96747(21)# 30# s [>300 ns] 5/2+#
194Re 75 119 193.97042(32)# 2# s [>300 ns]
This table header & footer:
  1. mRh  Excited nuclear isomer.
  2. ()  Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. #  Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. Bold half-life  nearly stable, half-life longer than age of universe.
  5. #  Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  6. Modes of decay:
    EC:Electron capture
    IT:Isomeric transition
    p:Proton emission
  7. Bold italics symbol as daughter  Daughter product is nearly stable.
  8. Bold symbol as daughter  Daughter product is stable.
  9. () spin value  Indicates spin with weak assignment arguments.
  10. Believed to undergo α decay to 181Ta
  11. primordial radionuclide
  12. Used in rhenium–osmium dating
  13. Can undergo Bound-state β decay with a half-life of 32.9 years when fully ionized
  14. Theorized to also undergo α decay to 183Ta

Rhenium-186

Radiopharmaceutical.

References

  1. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. "Standard Atomic Weights: Rhenium". CIAAW. 1973.
  3. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; et al. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. Bosch, F.; Faestermann, T.; Friese, J.; et al. (1996). "Observation of bound-state β decay of fully ionized 187Re: 187Re-187Os Cosmochronometry". Physical Review Letters. 77 (26): 5190–5193. Bibcode:1996PhRvL..77.5190B. doi:10.1103/PhysRevLett.77.5190. PMID 10062738.
  5. Janiak, Ł.; Gierlik, M.; R. Prokopowicz, G. Madejowski; Wronka, S.; Rzadkiewicz, J.; Carroll, J. J.; Chiara, C. J. (2022). "Half-life of the 188-keV isomer of 184Re". Physical Review C. 106 (44303): 044303. Bibcode:2022PhRvC.106d4303J. doi:10.1103/PhysRevC.106.044303. S2CID 252792730.
  6. Page, R. D.; Bianco, L.; Darby, I. G.; Uusitalo, J.; Joss, D. T.; Grahn, T.; Herzberg, R.-D.; Pakarinen, J.; Thomson, J.; Eeckhaudt, S.; Greenlees, P. T.; Jones, P. M.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M.; Leppänen, A.-P.; Nyman, M.; Rahkila, P.; Sarén, J.; Scholey, C.; Steer, A.; Hornillos, M. B. Gómez; Al-Khalili, J. S.; Cannon, A. J.; Stevenson, P. D.; Ertürk, S.; Gall, B.; Hadinia, B.; Venhart, M.; Simpson, J. (26 June 2007). "α decay of Re 159 and proton emission from Ta 155". Physical Review C. 75 (6): 061302. Bibcode:2007PhRvC..75f1302P. doi:10.1103/PhysRevC.75.061302. ISSN 0556-2813. Retrieved 12 June 2023.
  7. Darby, I. G.; Page, R. D.; Joss, D. T.; Bianco, L.; Grahn, T.; Judson, D. S.; Simpson, J.; Eeckhaudt, S.; Greenlees, P. T.; Jones, P. M.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M.; Leppänen, A.-P.; Nyman, M.; Rahkila, P.; Sarén, J.; Scholey, C.; Steer, A. N.; Uusitalo, J.; Venhart, M.; Ertürk, S.; Gall, B.; Hadinia, B. (20 June 2011). "Precision measurements of proton emission from the ground states of Ta 156 and Re 160". Physical Review C. 83 (6): 064320. Bibcode:2011PhRvC..83f4320D. doi:10.1103/PhysRevC.83.064320. ISSN 0556-2813. Retrieved 21 June 2023.
  8. Darby, I. G.; Page, R. D.; Joss, D. T.; Simpson, J.; Bianco, L.; Cooper, R. J.; Eeckhaudt, S.; Ertürk, S.; Gall, B.; Grahn, T.; Greenlees, P. T.; Hadinia, B.; Jones, P. M.; Judson, D. S.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M.; Leppänen, A. -P.; Nyman, M.; Rahkila, P.; Sarén, J.; Scholey, C.; Steer, A. N.; Uusitalo, J.; Venhart, M. (10 January 2011). "Decay of the high-spin isomer in 160Re: Changing single-particle structure beyond the proton drip line". Physics Letters B. 695 (1): 78–81. Bibcode:2011PhLB..695...78D. doi:10.1016/j.physletb.2010.10.052. ISSN 0370-2693. Retrieved 21 June 2023.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.