Rouché–Capelli theorem

In linear algebra, the Rouché–Capelli theorem determines the number of solutions for a system of linear equations, given the rank of its augmented matrix and coefficient matrix. The theorem is variously known as the:

Formal statement

A system of linear equations with n variables has a solution if and only if the rank of its coefficient matrix A is equal to the rank of its augmented matrix [A|b].[1] If there are solutions, they form an affine subspace of of dimension n  rank(A). In particular:

  • if n = rank(A), the solution is unique,
  • otherwise there are infinitely many solutions.

Example

Consider the system of equations

x + y + 2z = 3,
x + y + z = 1,
2x + 2y + 2z = 2.

The coefficient matrix is

and the augmented matrix is

Since both of these have the same rank, namely 2, there exists at least one solution; and since their rank is less than the number of unknowns, the latter being 3, there are infinitely many solutions.

In contrast, consider the system

x + y + 2z = 3,
x + y + z = 1,
2x + 2y + 2z = 5.

The coefficient matrix is

and the augmented matrix is

In this example the coefficient matrix has rank 2, while the augmented matrix has rank 3; so this system of equations has no solution. Indeed, an increase in the number of linearly independent columns has made the system of equations inconsistent.

See also

References

  1. Shafarevich, Igor R.; Remizov, Alexey (2012-08-23). Linear Algebra and Geometry. Springer Science & Business Media. p. 56. ISBN 9783642309946.
  • A. Carpinteri (1997). Structural mechanics. Taylor and Francis. p. 74. ISBN 0-419-19160-7.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.