Isotopes of ruthenium
Naturally occurring ruthenium (44Ru) is composed of seven stable isotopes. Additionally, 27 radioactive isotopes have been discovered. Of these radioisotopes, the most stable are 106Ru, with a half-life of 373.59 days; 103Ru, with a half-life of 39.26 days and 97Ru, with a half-life of 2.9 days.
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Standard atomic weight Ar°(Ru) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Twenty-four other radioisotopes have been characterized with atomic weights ranging from 86.95 u (87Ru) to 119.95 u (120Ru). Most of these have half-lives that are less than five minutes, except 94Ru (half-life: 51.8 minutes), 95Ru (half-life: 1.643 hours), and 105Ru (half-life: 4.44 hours).
The primary decay mode before the most abundant isotope, 102Ru, is electron capture and the primary mode after is beta emission. The primary decay product before 102Ru is technetium and the primary product after is rhodium.
Because of the very high volatility of ruthenium tetroxide (RuO
4) ruthenium radioactive isotopes with their relative short half-life are considered as the second most hazardous gaseous isotopes after iodine-131 in case of release by a nuclear accident.[4][5][6] The two most important isotopes of ruthenium in case of nuclear accident are these with the longest half-life: 103Ru (≥ 1 month) and 106Ru (≥ 1 year).[5]
List of isotopes
Nuclide [n 1] |
Z | N | Isotopic mass (Da) [n 2][n 3] |
Half-life [n 4] |
Decay mode [n 5] |
Daughter isotope [n 6] |
Spin and parity [n 7][n 4] |
Natural abundance (mole fraction) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Excitation energy[n 4] | Normal proportion | Range of variation | |||||||||||||||||
87Ru | 44 | 43 | 86.94918(64)# | 50# ms [>1.5 µs] | β+ | 87Tc | 1/2−# | ||||||||||||
88Ru | 44 | 44 | 87.94026(43)# | 1.3(3) s [1.2(+3−2) s] | β+ | 88Tc | 0+ | ||||||||||||
89Ru | 44 | 45 | 88.93611(54)# | 1.38(11) s | β+ | 89Tc | (7/2)(+#) | ||||||||||||
90Ru | 44 | 46 | 89.92989(32)# | 11.7(9) s | β+ | 90Tc | 0+ | ||||||||||||
91Ru | 44 | 47 | 90.92629(63)# | 7.9(4) s | β+ | 91Tc | (9/2+) | ||||||||||||
91mRu | 80(300)# keV | 7.6(8) s | β+ (>99.9%) | 91Tc | (1/2−) | ||||||||||||||
IT (<.1%) | 91Ru | ||||||||||||||||||
β+, p (<.1%) | 90Mo | ||||||||||||||||||
92Ru | 44 | 48 | 91.92012(32)# | 3.65(5) min | β+ | 92Tc | 0+ | ||||||||||||
93Ru | 44 | 49 | 92.91705(9) | 59.7(6) s | β+ | 93Tc | (9/2)+ | ||||||||||||
93m1Ru | 734.40(10) keV | 10.8(3) s | β+ (78%) | 93Tc | (1/2)− | ||||||||||||||
IT (22%) | 93Ru | ||||||||||||||||||
β+, p (.027%) | 92Mo | ||||||||||||||||||
93m2Ru | 2082.6(9) keV | 2.20(17) µs | (21/2)+ | ||||||||||||||||
94Ru | 44 | 50 | 93.911360(14) | 51.8(6) min | β+ | 94Tc | 0+ | ||||||||||||
94mRu | 2644.55(25) keV | 71(4) µs | (8+) | ||||||||||||||||
95Ru | 44 | 51 | 94.910413(13) | 1.643(14) h | β+ | 95Tc | 5/2+ | ||||||||||||
96Ru | 44 | 52 | 95.907598(8) | Observationally Stable[n 8] | 0+ | 0.0554(14) | |||||||||||||
97Ru | 44 | 53 | 96.907555(9) | 2.791(4) d | β+ | 97mTc | 5/2+ | ||||||||||||
98Ru | 44 | 54 | 97.905287(7) | Stable[n 9] | 0+ | 0.0187(3) | |||||||||||||
99Ru | 44 | 55 | 98.9059393(22) | Stable[n 9] | 5/2+ | 0.1276(14) | |||||||||||||
100Ru | 44 | 56 | 99.9042195(22) | Stable[n 9] | 0+ | 0.1260(7) | |||||||||||||
101Ru[n 10] | 44 | 57 | 100.9055821(22) | Stable[n 9] | 5/2+ | 0.1706(2) | |||||||||||||
101mRu | 527.56(10) keV | 17.5(4) µs | 11/2− | ||||||||||||||||
102Ru[n 10] | 44 | 58 | 101.9043493(22) | Stable[n 9] | 0+ | 0.3155(14) | |||||||||||||
103Ru[n 10] | 44 | 59 | 102.9063238(22) | 39.26(2) d | β− | 103Rh | 3/2+ | ||||||||||||
103mRu | 238.2(7) keV | 1.69(7) ms | IT | 103Ru | 11/2− | ||||||||||||||
104Ru[n 10] | 44 | 60 | 103.905433(3) | Observationally Stable[n 11] | 0+ | 0.1862(27) | |||||||||||||
105Ru[n 10] | 44 | 61 | 104.907753(3) | 4.44(2) h | β− | 105Rh | 3/2+ | ||||||||||||
106Ru[n 10] | 44 | 62 | 105.907329(8) | 373.59(15) d | β− | 106Rh | 0+ | ||||||||||||
107Ru | 44 | 63 | 106.90991(13) | 3.75(5) min | β− | 107Rh | (5/2)+ | ||||||||||||
108Ru | 44 | 64 | 107.91017(12) | 4.55(5) min | β− | 108Rh | 0+ | ||||||||||||
109Ru | 44 | 65 | 108.91320(7) | 34.5(10) s | β− | 109Rh | (5/2+)# | ||||||||||||
110Ru | 44 | 66 | 109.91414(6) | 11.6(6) s | β− | 110Rh | 0+ | ||||||||||||
111Ru | 44 | 67 | 110.91770(8) | 2.12(7) s | β− | 111Rh | (5/2+) | ||||||||||||
112Ru | 44 | 68 | 111.91897(8) | 1.75(7) s | β− | 112Rh | 0+ | ||||||||||||
113Ru | 44 | 69 | 112.92249(8) | 0.80(5) s | β− | 113Rh | (5/2+) | ||||||||||||
113mRu | 130(18) keV | 510(30) ms | (11/2−) | ||||||||||||||||
114Ru | 44 | 70 | 113.92428(25)# | 0.53(6) s | β− (>99.9%) | 114Rh | 0+ | ||||||||||||
β−, n (<.1%) | 113Rh | ||||||||||||||||||
115Ru | 44 | 71 | 114.92869(14) | 740(80) ms | β− (>99.9%) | 115Rh | |||||||||||||
β−, n (<.1%) | 114Rh | ||||||||||||||||||
116Ru | 44 | 72 | 115.93081(75)# | 400# ms [>300 ns] | β− | 116Rh | 0+ | ||||||||||||
117Ru | 44 | 73 | 116.93558(75)# | 300# ms [>300 ns] | β− | 117Rh | |||||||||||||
118Ru | 44 | 74 | 117.93782(86)# | 200# ms [>300 ns] | β− | 118Rh | 0+ | ||||||||||||
119Ru | 44 | 75 | 118.94284(75)# | 170# ms [>300 ns] | |||||||||||||||
120Ru | 44 | 76 | 119.94531(86)# | 80# ms [>300 ns] | 0+ | ||||||||||||||
This table header & footer: |
- mRu – Excited nuclear isomer.
- ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
- # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
- # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
-
Modes of decay:
IT: Isomeric transition n: Neutron emission p: Proton emission - Bold symbol as daughter – Daughter product is stable.
- ( ) spin value – Indicates spin with weak assignment arguments.
- Believed to undergo β+β+ decay to 96Mo with a half-life over 6.7×1016 years
- Theoretically capable of spontaneous fission
- Fission product
- Believed to undergo β−β− decay to 104Pd
- Geologically exceptional samples are known in which the isotopic composition lies outside the reported range. The uncertainty in the atomic mass may exceed the stated value for such specimens.
- In September 2017 an estimated amount of 100 to 300 TBq (0.3 to 1 g) of 106Ru was released in Russia, probably in the Ural region. It was, after ruling out release from a reentering satellite, concluded that the source is to be found either in nuclear fuel cycle facilities or radioactive source production. In France levels up to 0.036mBq/m3 of air were measured. It is estimated that over distances of the order of a few tens of kilometres around the location of the release levels may exceed the limits for non-dairy foodstuffs.[7]
References
- Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
- "Standard Atomic Weights: Ruthenium". CIAAW. 1983.
- Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; et al. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
- Ronneau, C., Cara, J., & Rimski-Korsakov, A. (1995). Oxidation-enhanced emission of ruthenium from nuclear fuel. Journal of Environmental Radioactivity, 26(1), 63-70.
- Backman, U., Lipponen, M., Auvinen, A., Jokiniemi, J., & Zilliacus, R. (2004). Ruthenium behaviour in severe nuclear accident conditions. Final report (No. NKS–100). Nordisk Kernesikkerhedsforskning.
- Beuzet, E., Lamy, J. S., Perron, H., Simoni, E., & Ducros, G. (2012). Ruthenium release modelling in air and steam atmospheres under severe accident conditions using the MAAP4 code. Nuclear Engineering and Design, 246, 157-162.
- Detection of ruthenium 106 in France and in Europe, IRSN France (9 Nov 2017)
- Isotope masses from:
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
- Isotopic compositions and standard atomic masses from:
- de Laeter, John Robert; Böhlke, John Karl; De Bièvre, Paul; Hidaka, Hiroshi; Peiser, H. Steffen; Rosman, Kevin J. R.; Taylor, Philip D. P. (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
- Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051.
- "News & Notices: Standard Atomic Weights Revised". International Union of Pure and Applied Chemistry. 19 October 2005.
- Half-life, spin, and isomer data selected from the following sources.
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
- National Nuclear Data Center. "NuDat 2.x database". Brookhaven National Laboratory.
- Holden, Norman E. (2004). "11. Table of the Isotopes". In Lide, David R. (ed.). CRC Handbook of Chemistry and Physics (85th ed.). Boca Raton, Florida: CRC Press. ISBN 978-0-8493-0485-9.