SUMO2

Small ubiquitin-related modifier 2 is a protein that in humans is encoded by the SUMO2 gene.[5]

SUMO2
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesSUMO2, HSMT3, SMT3B, SMT3H2, SUMO3, Smt3A, small ubiquitin-like modifier 2, small ubiquitin like modifier 2
External IDsOMIM: 603042 MGI: 2158813 HomoloGene: 87858 GeneCards: SUMO2
Orthologs
SpeciesHumanMouse
Entrez

6613

170930

Ensembl

ENSG00000188612

ENSMUSG00000020738

UniProt

P61956

P61957

RefSeq (mRNA)

NM_001005849
NM_006937

NM_133354

RefSeq (protein)

NP_001005849
NP_008868

NP_579932

Location (UCSC)Chr 17: 75.17 – 75.18 MbChr 11: 115.41 – 115.43 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Function

This gene encodes a protein that is a member of the SUMO (small ubiquitin-like modifier) protein family. It is a ubiquitin-like protein and functions in a manner similar to ubiquitin in that it is bound to target proteins as part of a post-translational modification system. However, unlike ubiquitin, which is primarily associated with targeting proteins for proteasomal degradation, SUMO2 is involved in a variety of cellular processes, such as nuclear transport, transcriptional regulation, apoptosis, and protein stability. It is not active until the last two amino acids of the carboxy-terminus have been cleaved off. Numerous pseudogenes have been reported for this gene. Alternate transcriptional splice variants encoding different isoforms have been characterized.[6]

Interactions

SUMO2 has been shown to interact with TRIM63[7] and CFAP298.[8]

Clinical significance

Deep hypothermia protects the brain from ischemic injury, which is why it's employed for major cardiovascular procedures that necessitate cardiopulmonary bypass and a period of circulatory arrest. With an experiment [9] conducted to moderate hypothermia, small ubiquitin-like modifier (SUMO1-3) conjugation was significantly activated in the brain. The effects of hypothermia on SUMO conjugation were evaluated in this experiment[9] using Western blot and immunohistochemistry in animals that were either normothermic (37 °C) or deep to moderate (18 °C, 24 °C, 30 °C) hypothermic cardiopulmonary bypass. In these cells, even 30 °C hypothermia was enough to significantly boost SUMO2/3-conjugated protein levels and nucleus accumulation. Deep hypothermia caused the SUMO-conjugating enzyme Ubc9 to translocate to the nucleus, implying that the increase in nuclear levels of SUMO2/3-conjugated proteins seen in hypothermic animals' brains is an active process. Deep hypothermia caused only a small increase in the amounts of SUMO2/3-conjugated proteins in primary neuronal cells. This shows that neurons in vivo have a greater capacity to activate this endogenous possibly neuroprotective mechanism when exposed to hypothermia than neurons in vitro. Identifying proteins that are SUMO2/3 conjugated during hypothermia could aid in the development of new preventive and therapeutic therapies to make neurons more resistant to a transient blood supply interruption.

References

  1. GRCh38: Ensembl release 89: ENSG00000188612 - Ensembl, May 2017
  2. GRCm38: Ensembl release 89: ENSMUSG00000020738 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Mannen H, Tseng HM, Cho CL, Li SS (May 1996). "Cloning and expression of human homolog HSMT3 to yeast SMT3 suppressor of MIF2 mutations in a centromere protein gene". Biochemical and Biophysical Research Communications. 222 (1): 178–80. doi:10.1006/bbrc.1996.0717. PMID 8630065.
  6. "Entrez Gene: SUMO2 SMT3 suppressor of mif two 3 homolog 2 (S. cerevisiae)".
  7. Dai KS, Liew CC (Jun 2001). "A novel human striated muscle RING zinc finger protein, SMRZ, interacts with SMT3b via its RING domain". The Journal of Biological Chemistry. 276 (26): 23992–9. doi:10.1074/jbc.M011208200. PMID 11283016.
  8. Golebiowski F, Matic I, Tatham MH, Cole C, Yin Y, Nakamura A, Cox J, Barton GJ, Mann M, Hay RT (2009). "System-wide changes to SUMO modifications in response to heat shock". Science Signaling. 2 (72): ra24. doi:10.1126/scisignal.2000282. PMID 19471022. S2CID 33450256.
  9. Wang, Liangli; Ma, Qing; Yang, Wei; Mackensen, G. Burkhard; Paschen, Wulf (November 2012). "Moderate hypothermia induces marked increase in levels and nuclear accumulation of SUMO2/3-conjugated proteins in neurons". Journal of Neurochemistry. 123 (3): 349–359. doi:10.1111/j.1471-4159.2012.07916.x. PMC 3466336. PMID 22891650.

Further reading


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.