Instructional scaffolding
Instructional scaffolding is the support given to a student by an instructor throughout the learning process. This support is specifically tailored to each student; this instructional approach allows students to experience student-centered learning, which tends to facilitate more efficient learning than teacher-centered learning.[1] This learning process promotes a deeper level of learning than many other common teaching strategies.
Instructional scaffolding provides sufficient support to promote learning when concepts and skills are being first introduced to students. These supports may include resource, compelling task, templates and guides, and/or guidance on the development of cognitive and social skills. Instructional scaffolding could be employed through modeling a task, giving advice, and/or providing coaching.
These supports are gradually removed as students develop autonomous learning strategies, thus promoting their own cognitive, affective and psychomotor learning skills and knowledge. Teachers help the students master a task or a concept by providing support. The support can take many forms such as outlines, recommended documents, storyboards, or key questions.
Essential features
There are three essential features of scaffolding that facilitate learning.[2][3]
- The first feature is the interaction between the learner and the expert. This interaction should be collaborative for it to be effective.
- The second is that learning should take place in the learner's zone of proximal development. To do that the expert needs to be aware of the learner's current level of knowledge and then work to a certain extent beyond that level.
- The third feature of scaffolding is that the scaffold, the support and guidance provided by the expert, is gradually removed as the learner becomes more proficient.
The support and guidance provided to the learner are compared to the scaffolds in building construction where the scaffolds provide both "adjustable and temporal" support to the building under construction.[4] The support and guidance provided to learners facilitate internalization of the knowledge needed to complete the task. This support is weaned gradually until the learner is independent.[4]
Effective scaffolding
For scaffolding to be effective teachers need to pay attention to the following:
- The selection of the learning task: The task should ensure that learners use the developing skills that need to be mastered.[5] The task should also be engaging and interesting to keep learners involved.[6] This task should be neither too difficult nor too easy for the learner.
- The anticipation of errors: After choosing the task, the teacher needs to anticipate errors the learners are likely to commit when working on the task. Anticipation of errors enables the scaffolder to properly guide the learners away from ineffective directions.[7]
- The application of scaffolds during the learning task: Scaffolds could be organized in "simple skill acquisition or they may be dynamic and generative".[7]
- The consideration of emotional issues: Scaffolding is not limited to a cognitive skill and can also support emotional responses (affect). For example, during a task the scaffolder (expert) might need to manage and control for frustration and loss of interest that could be experienced by the learner.[5] Encouragement is also an important scaffolding component.[8]
Theory of scaffolding
Scaffolding theory was first introduced in the late 1950s by Jerome Bruner, a cognitive psychologist. He used the term to describe young children's oral language acquisition. Helped by their parents when they first start learning to speak, young children are provided with informal instructional formats within which their learning is facilitated. A scaffolding format investigated by Bruner and his postdoctoral student Anat Ninio whose scaffolding processes are described in detail is joint picture-book reading (Ninio & Bruner, 1978).[9] By contrast, bed-time stories and read alouds are examples of book-centered parenting events (Daniels, 1994) without scaffolding interaction. Scaffolding is inspired by Lev Vygotsky's concept of an expert assisting a novice, or an apprentice. Scaffolding is changing the level of support to suit the cognitive potential of the child. Over the course of a teaching session, one can adjust the amount of guidance to fit the child's potential level of performance. More support is offered when a child is having difficulty with a particular task and, over time, less support is provided as the child makes gains on the task. Ideally, scaffolding works to maintain the child's potential level of development in the zone of proximal development (ZPD). An essential element to the ZPD and scaffolding is the acquisition of language. According to Vygotsky, language (and in particular, speech) is fundamental to children's cognitive growth because language provides purpose and intention so that behaviors can be better understood.[10] Through the use of speech, children are able to communicate to and learn from others through dialogue, which is an important tool in the ZPD. In a dialogue, a child's unsystematic, disorganized, and spontaneous concepts are met with the more systematic, logical and rational concepts of the skilled helper.[11] Empirical research suggests that the benefits of scaffolding are not only useful during a task, but can extend beyond the immediate situation in order to influence future cognitive development. For instance, a recent study recorded verbal scaffolding between mothers and their 3- and 4-year-old children as they played together. Then, when the children were six years old, they underwent several measures of executive function, such as working memory and goal-directed play. The study found that the children's working memory and language skills at six years of age were related to the amount of verbal scaffolding provided by mothers at age three. In particular, scaffolding was most effective when mothers provided explicit conceptual links during play. Therefore, the results of this study not only suggest that verbal scaffolding aids children's cognitive development, but that the quality of the scaffolding is also important for learning and development.[12]
A construct that is critical for scaffolding instruction is Vygotsky's concept of the zone of proximal development (ZPD). The zone of proximal development is the field between what a learner can do on their own (expert stage) and the most that can be achieved with the support of a knowledgeable peer or instructor (pedagogical stage) (Ellis & Worthington, 1994).[13] Vygotsky was convinced that a child could be taught any subject efficiently using scaffolding practices by implementing the scaffolds through the zone of proximal development. Students are escorted and monitored through learning activities that function as interactive conduits to get them to the next stage. Thus the learner obtains or raises new understandings by building on their prior knowledge through the support delivered by more capable individuals (Raymond, 2000). Several peer-reviewed studies have shown that when there is a deficiency in guided learning experiences and social interaction, learning and development are obstructed (Bransford, Brown, and Cocking, 2000). Moreover, several things influence the ZPD of students, ranging from the collaboration of peers to technology available in the classroom (Ebadi, Khatib, and Shabani, 2010)[14]
In writing instruction, support is typically presented in verbal form (discourse). The writing tutor engages the learner's attention, calibrates the task, motivates the student, identifies relevant task features, controls for frustration, and demonstrates as needed (Rodgers, 2004). Through joint activities, the teacher scaffolds conversation to maximize the development of a child's intrapsychological functioning. In this process, the adult controls the elements of the task that are beyond the child's ability, all the while increasing the expectations of what the child is able to do. Speech, a critical tool to scaffold thinking and responding, plays a crucial role in the development of higher psychological processes (Luria, 1979) because it enables thinking to be more abstract, flexible, and independent (Bodrova & Leong, 1996).[15] From a Vygotskian perspective, talk and action work together with the sociocultural fabric of the writing event to shape a child's construction of awareness and performance (Dorn, 1996).[16] Dialogue may range from casual talk to deliberate explanations of features of written language. The talk embedded in the actions of the literacy event shapes the child's learning as the tutor regulates his or her language to conform to the child's degrees of understanding. Clay (2005)[17] shows that what may seem like casual conversational exchanges between tutor and student actually offer many opportunities for fostering cognitive development, language learning, story composition for writing, and reading comprehension. Conversations facilitate generative, constructive, experimental, and developmental speech and writing in the development of new ideas (Smagorinsky, 2007).[18]
In Vygotsky's words, "what the child is able to do in collaboration today he will be able to do independently tomorrow" (Vygotsky, 1987, p. 211).
Some ingredients of scaffolding are predictability, playfulness, focus on meaning, role reversal, modeling, and nomenclature.[19]
Levels and types in the educational setting
According to Saye and Brush, there are two levels of scaffolding: soft and hard (2002). An example of soft scaffolding in the classroom would be when a teacher circulates the room and converses with his or her students (Simon and Klein, 2007). The teacher may question their approach to a difficult problem and provide constructive feedback to the students. According to Van Lier, this type of scaffolding can also be referred to as contingent scaffolding. The type and amount of support needed is dependent on the needs of the students during the time of instruction (Van Lier, 1996). Unfortunately, applying scaffolding correctly and consistently can be difficult when the classroom is large and students have various needs (Gallagher, 1997). Scaffolding can be applied to a majority of the students, but the teacher is left with the responsibility to identify the need for additional scaffolding.
In contrast with contingent or soft scaffolding, embedded or hard scaffolding is planned in advance to help students with a learning task that is known in advance to be difficult (Saye and Brush, 2002). For example, when students are discovering the formula for the Pythagorean Theorem in math class, the teacher may identify hints or cues to help the student reach an even higher level of thinking. In both situations, the idea of "expert scaffolding" is being implemented (Holton and Clarke, 2006):[20] the teacher in the classroom is considered the expert and is responsible for providing scaffolding for the students.
Reciprocal scaffolding, a method first coined by Holton and Thomas, is a method that involves a group of two or more collaboratively working together. In this situation, the group can learn from each other's experiences and knowledge. The scaffolding is shared by each member and changes constantly as the group works on a task (Holton and Clarke, 2006).[20] According to Vygotsky, students develop higher-level thinking skills when scaffolding occurs with an adult expert or with a peer of higher capabilities (Stone, 1998). Conversely, Piaget believes that students discard their ideas when paired with an adult or student of more expertise (Piaget, 1928). Instead, students should be paired with others who have different perspectives. Conflicts would then take place between students allowing them to think constructively at a higher level.
Technical scaffolding is a newer approach in which computers replace the teachers as the experts or guides, and students can be guided with web links, online tutorials, or help pages (Yelland and Masters, 2007). Educational software can help students follow a clear structure and allows students to plan properly (Lai and Law, 2006).[21]
Directive and supportive scaffolding
Silliman and Wilkinson (1994) distinguish two types of scaffolding: 'supportive scaffolding' that characterises the IRF (Initiation-Response-Follow-up) pattern; and 'directive scaffolding' that refers to IRE (Initiation-Response-Evaluation). Saxena (2010)[22] develops these two notions theoretically by incorporating Bhaktin's (1981)[23] and vanLier's (1996)[24] works. Within the IRE pattern, teachers provide 'directive scaffolding' on the assumption that their job is to transmit knowledge and then assess its appropriation by the learners. The question-answer-evaluation sequence creates a predetermined standard for acceptable participation and induces passive learning. In this type of interaction, the teacher holds the right to evaluate and asks 'known-information' questions which emphasise the reproduction of information. The nature and role of the triadic dialogue have been oversimplified and the potential for the roles of teachers and students in them has been undermined (Nassaji and Wells, 2000).[25]
If, in managing the talk, teachers apply 'constructive power' (Saxena, 2009)[26] and exploit students' responses as occasions for joint exploration, rather than simply evaluating them, then the classroom talk becomes dialogic (Nystrand, 1997).[27] The pedagogic orientation of this talk becomes 'participation orientation', in contrast to 'display/assessment orientation' of IRE (van Lier, 1996).[24] In this kind of pattern of interaction, the third part of the triadic dialogue offers 'follow-up' and teachers' scaffolding becomes 'supportive'. Rather than producing 'authoritative discourse' Bakhtin's (1981),[23] teachers constructs 'internally persuasive discourse' that allows 'equality' and 'symmetry' (van Lier, 1996:175),[24] wherein the issues of power, control, institutional managerial positioning, etc. are diffused or suspended. The discourse opens up the roles for students as the 'primary knower' and the 'sequence initiator' (Nassaji and Wells, 2000),[25] which allows them to be the negotiator and co-constructor of meaning. The suspension of asymmetry in the talk represents a shift in the teacher's ideological stance and, therefore, demonstrates that supportive scaffolding is more than simply a model of instruction (Saxena, 2010: 167).[22]
The role of guidance
Guidance and cognitive load
Learner support in scaffolding is known as guidance. While it takes on various forms and styles, the basic form of guidance is any type of interaction from the instructor that is intended to aid and/or improve student learning.[28] While this a broad definition, the role and amount of guidance is better defined by the instructor's approach. Instructionists and constructionists approach giving guidance within their own instructional frameworks. Scaffolding involves presenting learners with proper guidance that moves them towards their learning goals. Providing guidance is a method of moderating the cognitive load of a learner. In scaffolding, learners can only be moved toward their learning goals if cognitive load is held in check by properly administered support.
Traditional teachers tend to give a higher level of deductive, diadactic instruction, with each piece of a complex task being broken down. This teacher-centered approach, consequently, tends to increase the cognitive load for students.
Constructivist instructors, in contrast, approach instruction from the approach of guided discovery with a particular emphasis on transfer. The concept of transfer focuses on a learner's ability to apply learned tasks in a context other than the one in which it was learned.[28] This results in constructivist instructors, unlike classical ones, giving a higher level of guidance than instruction.
Amount of guidance
Research has demonstrated that higher level of guidance has a greater effect on scaffolded learning, but is not a guarantee of more learning.[29] The efficacy of higher amount of guidance is dependent on the level of detail and guidance applicability.[28] Having multiple types of guidance (i.e. worked examples, feedback) can cause them to interact and reinforce each other. Multiple conditions do not guarantee greater learning, as certain types of guidance can be extraneous to the learning goals or the modality of learning. With this, more guidance (if not appropriate to the learning) can negatively impact performance, as it gives the learner overwhelming levels of information.[28] However, appropriately designed high levels of guidance, which properly interact with the learning, is more beneficial to learning than low levels of guidance.
Context of guidance
Constructivists pay close attention to the context of guidance because they believe instruction plays a major role in knowledge retention and transfer.[28] Research studies[30][31] demonstrate how the context of isolated explanations can have an effect on student-learning outcomes. For example, Hake's (1998) large-scale study[32] demonstrated how post-secondary physics students recalled less than 30% of material covered in a traditional lecture-style class. Similarly, other studies[33][34][35] illustrate how students construct different understandings from explanation in isolation versus having a first experience with the material. A first, experience with the material provides students with a "need to know",[28] which allows learners to reflect on prior experiences with the content, which can help learners construct meaning from instruction.[28] Worked examples[36] are guiding tools that can act as a "need to know" for students. Worked examples provide students with straightforward goals, step-by-step instructions as well as ready-to-solve problems that can help students develop a stronger understanding from instruction.[37][38]
Timing of guidance
Guiding has a key role in both constructivism and 'instructivism'. For instructivists, the timing of guidance is immediate, either at the beginning or when the learner makes a mistake, whereas in constructivism it can be delayed.[28] It has been found that immediate feedback can lead to working memory load as it does not take in consideration the process of gradual acquisition of a skill,[39] which also relates to the amount of guidance being given. Research on intelligent-tutoring systems suggests that immediate feedback on errors is a great strategy to promote learning. As the learner is able to integrate the feedback from short-term memory into the overall learning and problem solving task; the longer the wait on feedback, the harder it is for the learner to make this integration.[39] Yet, in another study it was found that providing feedback right after the error can deprive the learner of the opportunity to develop evaluative skills.[40] Wise and O'Neill bring these two, seemingly contradictory findings, and argue that it does not only prove the importance of the role of feedback, but that points out a timing feature of feedback: immediate feedback in the short term promotes more rapid problem solving, but delaying feedback can result in better retention and transfer in the long term.[28]
Constructivism and guidance
Constructivism views knowledge as a "function of how the individual creates meaning from his or her own experiences".[41] Constructivists advocate that learning is better facilitated in a minimally guided environment where learners construct important information for themselves.[42] According to constructivism, minimal guidance in the form of process or task related information should be provided to learners upon request and direct instruction of learning strategies should not be used because it impedes the natural processes learners use to recall prior experiences. In this view, for learners to construct knowledge they should be provided with the goals and minimal information and support. Applications that promote constructivist learning require learners to solve authentic problems or "acquire knowledge in information-rich settings".[43] An example of an application of constructivist learning is science instruction, where students are asked to discover the principles of science by imitating the steps and actions of researchers.[44]
Instructivism and guidance
Instructionism are educational practices characterized for being instructor-centered. Some authors see instructionism as a highly prescriptive practice that mostly focuses on the formation of skills, that is very product-oriented and is not interactive;[45] or that is a highly structured, systematic and explicit way of teaching that gives emphasis to the role of the teacher as a transmitter of knowledge and the students as passive receptacles.[46] The 'transmission' of knowledge and skills from the teacher to the student in this context is often manifested in the form of drill, practice and rote memorization.[46] An 'instructionist', then, focuses on the preparation, organization and management of the lesson making sure the plan is detailed and the communication is effective.[47][48] The emphasis is on the up-front explicit delivery of instruction.[28]
Instructionism is often contrasted with constructivism. Both of them use the term guidance as means to support learning, and how it can be used more effectively. The difference in the use of guidance is found in the philosophical assumptions regarding the nature of the learner,[46] but they also differ in their views around the quantity, the context and the timing of guidance.[28] An example of application of instructionism in the classroom is direct instruction.
Minimal guidance in education
With traditional power dynamics in the classroom, the teacher is the authority. In order to engage in meaningful student talk, we need to break this hierarchy.[49]
Minimal guidance is a general term applied to a variety of pedagogical approaches such as inquiry learning, learner-centered pedagogy, student-centered learning,[50] project based learning, and discovery learning. It is the idea that learners, regardless of their level of expertise, will learn best through discovering and/or constructing information for themselves in contrast to more teacher-led classrooms which in contrast are described as more passive learning.[51][52][53][54]
A safe approach is to offer three options. The teacher designs two options based on what most students may like to do. The third choice is a blank check -- students propose their own product or performance.[55]
In this approach, the role of the teacher may change from what has been described as "sage on the stage" to "guide on the side" with one example of this change in practice being that teachers will not tend to answer questions from students directly, but instead will ask questions back to students to prompt further thinking.[56][57][49][58][59][60][61] This change in teaching style has also been described as being a "facilitator of learning" instead of being a "dispenser of knowledge".[62]
Minimal guidance is regarded as controversial[63] and has been described as a caricature that does not exist in practice, and that critics have combined too many different approaches some of which may include more guidance, under the label of minimal guidance.[64][65] However, there is some evidence that in certain domains, and under certain circumstances, a minimal guidance approach can lead to successful learning if sufficient practice opportunities are built in.[66]
Minimal guidance in education: Criticisms and controversies
One strand of criticism of the minimal guidance approach originating in cognitive load theory is that it does not align with human cognitive architecture making it an inefficient approach to learning for beginner learners in particular.[51][67] In this strand of criticism, minimal guidance approaches are contrasted with fully guided approaches to instruction which better match inherent human cognitive architecture.[68][69] While accepting this general line of argument, counter-arguments for individual approaches such as problem-based learning have highlighted how these are not minimal guidance approaches, and are consistent with human cognitive architecture.[70] Other strands of criticism suggest that there is little empirical evidence for the effectiveness of learner-centered approaches when compared to more teacher-led approaches, and this is despite extensive encouragement and support from national and international education agencies including UNESCO, UNICEF, and the World Bank.[71][72][73] Further more specific criticisms include the following: minimal guidance is inefficient compared to explicit instruction due to a lack of worked examples, minimal guidance leads to reduced opportunities for student practice, and minimal guidance happens inevitably in project based learning as a result of the teacher having to manage too many student projects at one time.[74]
Minimal guidance in education: Synthesis and solutions
One of the consequences of this reconceptualization is abandoning the rigid explicit instruction versus minimal guidance dichotomy and replacing it with a more flexible approach based on differentiating specific goals of various learner activities in complex learning.[75]
There have been several attempts to move beyond the minimal guidance versus fully guided instruction controversy. These are often developed by introducing the variable of learner expertise and using that to suggest adapting instructional styles depending on the level of expertise of the learner, with more expert learners generally requiring less direct instruction.[76] For example, despite providing many of the criticisms of minimal guidance, cognitive load theory does also suggest a role for less direct guidance from the teacher as learners become more expert due to the expertise reversal effect.[77] Other attempts at synthesis include using pedagogies more associated with martial arts instruction that apply explicit instruction as a means of fostering student discovery through repeated practice.[78]
If instead we entertain the possibility that instruction and discovery are not oil and water, that instruction and discovery coexist and can work together, we may find a solution to this impasse in the field. Perhaps our way out of the instructivist-constructivist impasse thus involves not a “middle ground” compromise but an alternative conceptualization of instruction and discovery.[78]
Applications
Instructional scaffolding can be thought of as the strategies that a teacher uses to help learners bridge a cognitive gap or progress in their learning to a level they were previously unable to accomplish.[79] These strategies evolve as the teachers evaluate the learners initial level of ability and then through continued feedback throughout the progression of the task. In the early studies, scaffolding was primarily done in oral, face- to-face learning environments. In classrooms, scaffolding may include modelling behaviours, coaching and prompting, thinking out loud, dialogue with questions and answers, planned and spontaneous discussions, as well as other interactive planning or structural assistance to help the learner bridge a cognitive gap. This can also include peer mentoring from more experienced students. These peers can be referred to as MKOs. "MKO" stands for More Knowledgeable Other. The "MKO" is a person who has a higher understanding of an idea or concept and can bridge this cognitive gap. This includes teachers, parents, and as stated before, peers. MKOs are central part of the process of learning in the ZPD, or Zone of Proximal Development. An MKO may help a student using scaffolding, with the goal being that the student can eventually lead themselves to the answer on their own, without the help of anyone else. The MKO may use a gradual reduction of assistance in order to facilitate this, as described earlier.
There are a wide variety of scaffolding strategies that teachers employ. One approach to looking at the application of scaffolding is to look at a framework for evaluating these strategies. This model was developed based on the theoretical principles of scaffolding to highlight the use of scaffolding for educational purposes.[79] It highlights two components of an instructors use of scaffolding. The first is the instructors intentions and the second refers to the means by which the scaffolding is carried out.
Scaffolding intentions: These groups highlight the instructors intentions for scaffolding[79]
Scaffolding means:
These groups highlight the ways in which the instructor scaffolds[79]
Any combination of scaffolding means with scaffolding intention can be construed as a scaffolding strategy, however, whether a teaching strategy qualifies as good scaffolding generally depends upon its enactment in actual practice and more specifically upon whether the strategy is applied contingently and whether it is also part of a process of fading and transfer of responsibility.[80]
Examples of scaffolding:[81]
Instructors can use a variety of scaffolds to accommodate different levels of knowledge. The context of learning (i.e. novice experience, complexity of the task) may require more than one scaffold strategy in order for the student to master new content.[81] The following table[82] outlines a few common scaffolding strategies:
Instructional scaffolds | Description of tool |
---|---|
Advanced organizers[83] | Tools that present new information or concepts to learners.
These tools organize information in a way that helps learners understand new and complex content. Examples of advanced organizers are: |
Modelling[87] | Instructors demonstrate desired behaviour, knowledge or task to students.
Instructors use modelling to:
|
Worked examples[36] | A worked example is a step-by-step demonstration of a complex problem or task..[89]
These types of instructional materials are commonly implemented in mathematics and science classes and include three key features:[89] 1. Problem formation: A principle or theory is introduced. 2. Step-by-step example: A worked example, that demonstrates how the student can solve the problem, is provided. 3. Solution to the problem: One or more read-to-be solved problems are given for the student to practice the skill. |
Concept Maps[90] | Graphical tools for organizing, representing and displaying the relationships between knowledge and concepts.[91]
Types of concept maps are:[92]
|
Explanations | Ways in which instructors present and explain new content to learners.
How new information is presented to the learner is a critical component for effective instruction. The use of materials such as visual images, graphic organizers, animated videos, audio files and other technological features can make explanations more engaging, motivating and meaningful for student learning. |
Handouts[94] | A supplementary resource used to support teaching and learning.
These tools can provide students with the necessary information (i.e. concept or theory, task instructions, learning goals, learning objectives) and practice (i.e. ready-to-be-solved problems) they need to master new content and skills. Handouts are helpful tools for explanations and worked examples. |
Prompts[95] | A physical or verbal cue to aid recall of prior or assumed knowledge.
There are different types of prompts, such as:[96]
|
Scaffolding mediated by technology
When we teach students who are not physically present in the classroom, instructors need to adapt to the environment and their scaffolding needs to be adjusted to fit this new learning medium. It can be challenging to find a way to adjust the verbal and visual elements of scaffolding to construct a successful interactive and collaborative learning environment for distance learning.
The recent spread of technology used in education has opened up the learning environment to include AI-based methods, hypermedia, hypertext, collaborative learning environments, and web-based learning environments. This challenges traditional learning design conceptions of scaffolding for educators.[97][98][99]
A recent review[100] of the types of scaffolding used in online learning identified four main types of scaffolding:
- conceptual scaffolding: helps students decide what to consider in learning and guide them to key concepts
- procedural scaffolding: helps students use appropriate tools and resources effectively
- strategic scaffolding: helps students find alternative strategies and methods to solve complex problems
- metacognitive scaffolding: prompts students to think about what they are learning throughout the process and assists students reflecting on what they have learnt (self-assessment). This is the most common research area and is thought to not only promote higher order thinking but also students ability to plan ahead. Reingold, Rimor and Kalay have listed seven mechanisms of metacognitive scaffolding that encourage students' metacognition in learning.[101]
These four types are structures that appropriately support students' learning in online environments.[102] Other scaffolding approaches that were addressed by the researchers included: technical support, content support, argumentation template, questioning and modelling. These terms were rarely used, and it was argued that these areas had unclear structure to guide students, especially in online learning, and were inadequately justified.
As technology changes, so does the form of support provided to online learners. Instructors have the challenge of adapting scaffolding techniques to this new medium, but also the advantage of using new web-based tools such as wikis and blogs as platforms to support and discuss with students.
Benefits in online learning environments
As the research in this area progresses, studies are showing that when students learn about complex topics with computer-based learning environments (CBLEs) without scaffolding they demonstrated poor ability to regulate their learning, and failure to gain a conceptual understanding of the topic.[103] As a result, researchers have recently begun to emphasize the importance of embedded conceptual, procedural, strategic, and metacognitive scaffolding in CBLEs.[97][104][105][106]
In addition to the four scaffolding guidelines outlined, recent research has shown:
- scaffolding can help in group discussions. In a recent study,[107] a significant increase in active participation and meaningful negotiations was found within the scaffolded groups as opposed to the non-scaffolded group.
- metacognitive scaffolding can be used to encourage students in reflecting and help build a sense of a community among learners.[108] Specifically, Reingold, Rimor and Kalay[108] recommend using metacognitive scaffolding to support students working on a common task. They believe this can support learners to experience their work as part of a community of learners.
Downfalls in online learning environments
An online learning environment warrants many factors for scaffolding to be successful, this includes basic knowledge of the use of technology, social interactions and reliance on student's individual motivation and initiative for learning. Collaboration is key to instructional scaffolding and can be lost without proper guidance from an instructor creating and initiating an online social space.[109]
The instructor's role in creating a social space for online interaction has been found to increase student's confidence in understanding the content and goals of the course. If an instructor does not create this space a student misses out on critical-thinking, evaluating material and collaborating with fellow students to foster learning. Even with instructors implementing a positive social space online, a research study found that students perceptions of incompetence to other classmates is not affected by positive online social spaces but found this to be less of a problem in face-face courses.[109]
Due to the distance learning that encompasses an online environment, self-regulation is essential for scaffolding to be effective, a study has shown that procrastinators are at a disadvantage in online distance learning and are not able to be scaffolded in the same degree as if there was an in-person instructor.[110]
Students who had more desire to master the content than to receive higher grades were more successful in the online courses.[111] A study by Artino and Stephens [112] found that graduate students were more motivated in online course than undergraduate students but suggests academic level may contribute to the amount of technological support that is needed for positive learning outcomes, finding that undergraduate students needed less support than graduate students when navigating an online course.
See also
- Collaborative learning – Situation in which two or more people learn or attempt to learn something together
- Constructive alignment – method of devising teaching activities that directly address learning outcomes
- Distributed scaffolding – Learner-centric pedagogy
- Educational psychology – Branch of psychology concerned with the scientific study of human learning
- Knowledge base – Information repository with multiple applications
- Metacognition – Thinking about thinking, higher-order thinking skills
- Social constructionism – Sociological theory regarding shared understandings
Notes
- R. Keith Sawyer The Cambridge Handbook of the Learning Sciences. New York: Cambridge University Press, 2006
- Beed, P., Hawkins, M., & Roller, C. (1991). Moving learners towards independence: the power of scaffolded instruction. The Reading Teacher, 44(9), 648–655.
- Wood, D., & Wood, H. (1996). Vygotsky, tutoring and learning. Oxford Review of Education, 22(1), 5–16.
- Palincsar, A. S. (1986). The role of dialogue in providing scaffolded instruction. Educational Psychologist, 21(1 & 2), 73–98.
- Wood, D., Bruner, J., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, 17, 89–100.
- Graves, M., Graves, M., & Braaten, S. (1996). Scaffolding reading experiences for inclusive classes. Educational Leadership, 53(5), 14–16.
- Rosenshine, B., & Meister, C. (1992). The use of scaffolds for teaching higher-level cognitive strategies. Educational Leadership, 49(7), 26–33.
- Schetz, K., & Stremmel, A. (1994). Teacher-assisted computer implementation: a Vygotskian perspective. Early Education and Development, 5(1), 18–26.
- Ninio, A. and Bruner, J. (1978). The achievement and antecedents of labelling. Journal of Child Language, 5, 1–15.
- Vygotsky, L. (1934/1986). Thought and language. Cambridge, MA: MIT Press.
- Santrock, J (2004). A Topical Approach To Life-Span Development. Chapter 6 Cognitive Development Approaches (200 – 225). New York, NY: McGraw-Hill.
- Landry, S. H.; Miller-Loncar, C. L.; Smith, K. E.; Swank, P. R. (2002). "The role of early parenting in children's development of executive processes". Developmental Neuropsychology. 21 (1): 15–41. doi:10.1207/s15326942dn2101_2. PMID 12058834. S2CID 43515104.
- Fidalgo, Raquel; Harris, Karen R.; Braaksma, Martine (2017-01-01), "Design Principles for Teaching Effective Writing: An Introduction", Design Principles for Teaching Effective Writing, BRILL, pp. 3–12, doi:10.1163/9789004270480_002, ISBN 9789004270473, retrieved 2022-11-23
- Shabani, Karim; Khatib, Mohamad; Ebadi, Saman (2010-11-16). "Vygotsky's Zone of Proximal Development: Instructional Implications and Teachers' Professional Development". English Language Teaching. 3 (4). doi:10.5539/elt.v3n4p237. ISSN 1916-4750. S2CID 38382898.
- Dix, Stephanie (2015-11-20). "Teaching writing: a multilayered participatory scaffolding practice". Literacy. 50 (1): 23–31. doi:10.1111/lit.12068. ISSN 1741-4350.
- "Talk, Reading and Writing", Teaching Early Reading and Phonics: Creative Approaches to Early Literacy, London, United Kingdom: SAGE Publications Ltd, pp. 90–100, 2011, doi:10.4135/9781473914728.n8, ISBN 9781849204217, retrieved 2022-11-23
- M., Clay, Marie (2006). Literacy lessons designed for individuals. Heinemann. ISBN 0-325-00916-3. OCLC 1119075229.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - Smagorinsky, Peter (2022-05-30), Vygotsky and Multicultural Education, Routledge, doi:10.4324/9781138609877-ree165-1, retrieved 2022-11-24
- Daniels, H. (1994). Literature Circles: Voice and choice in the student-centered classroom. Markham: Pembroke Publishers Ltd.
- Holton, Derek; Clarke, David (2006-03-15). "Scaffolding and metacognition". International Journal of Mathematical Education in Science and Technology. 37 (2): 127–143. doi:10.1080/00207390500285818. ISSN 0020-739X. S2CID 123464772.
- Lai, Ming; Law, Nancy (September 2006). "Peer Scaffolding of Knowledge Building Through Collaborative Groups with Differential Learning Experiences". Journal of Educational Computing Research. 35 (2): 123–144. doi:10.2190/gw42-575w-q301-1765. ISSN 0735-6331. S2CID 62585185.
- Saxena, M. (2010) Reconceptualising teachers' directive and supportive scaffolding in bilingual classrooms within the neo-Vygotskyan approach. Journal of Applied Linguistics & Professional Practice, 7 (2), pp. 163-184
- Bakhtin, M.M. (1981) The Dialogic Imagination: Four Essays by M. M. Bakhtin. Edited by M. Holquist and translated by C. Emerson and M. Holquist. Austin: University of Texas Press.
- Van Lier, L. (1996) Interaction in the Language Curriculum: Awareness, Autonomy, and Authenticity. London: Longman.
- Nassaji, H. and Wells, G. (2000) What's the use of "triadic dialogue"? An investigation of teacher-student interaction. Applied Linguistics 21 (3): 376--406.
- Saxena, M. (2009) Negotiating conflicting ideologies and linguistic otherness: codeswitching in English classrooms. English Teaching: Practice and Critique 8 (2): 167-- 187.
- Nystrand, M. (1997) Opening Dialogue: Understanding the Dynamics of Language and Learning in the English Classroom. New York: Teachers College Press.
- Wise, A. F., & O'Neill, K. (2009). Beyond more versus less: A reframing of the debate on instructional guidance. Retrieved from http://psycnet.apa.org/psycinfo/2009-09809-005
- Sweller, J., Kirschner, P.A., and Clark, R. E. (2007). Why Minimally Guided Teaching Techniques Do Not Work: A Reply to Commentaries. Educational Psychologist, 42(2), 115–121.
- Wieman, C., & Perkins, K. (2005). Transforming physics education. Physics Today, 59(11), 36–41.
- Hrepic, Z., Zollman, D. A., & Rebello, N. S. (2007). Comparing students' and experts' understanding of the content of a lecture. Journal of Science Education and Technology, 16(3), 213-224.
- Hake, R. R. (1998). Interactive engagement versus traditional methods: A six-thousand-student survey of mechanics test data for introductory physics course. American Journal of Physics, 66(1), 64–74.
- Capon, N., & Kuhn, D. (2004). What's so good about problem-based learning? Cognition and Instruction, 22, 61-79.
- Miller, C., Lehman, J., & Koedinger, K. (1999). Goals and learning in microworlds. Cognitive Science, 23, 305-336.
- Swartz, D.L., & Martin, T. (2004). Inventing to prepare for learning: The hidden efficiency of original student production in statistics instruction. Cognition and Instruction, 22, 129–184.
- Worked-example effect
- Carroll, W. (1994). Using worked examples as instructional support in the algebra classroom. Journal of Educational Psychology, 86, 360–367.
- Trafton, J. G., & Reiser, B. J., (1993). The contribution of studying examples and solving problems to skill acquisition. Paper presented at the 15th Annual Conference of the Cognitive Science Society.
- John R. Anderson; Albert T. Corbett; Kenneth R. Koedinger; Ray Pelletier The Journal of the Learning Sciences, Vol. 4, No. 2. (1995), pp. 167-207.
- Mathan, S., & Koedinger, K. R. (2003). Recasting the feedback debate: Benefits of tutoring error detection and correction skills. In U. Hoppe, F. Verdejo, & J. Kay (Eds.), Artificial intelligence in education: Shaping the future of learning through intelligent technologies (pp. 13-20). Amsterdam: IOS Press.
- Jonassen, D. H. (1991). Objectivism versus constructivism: do we need a new philosophical paradigm? Educational Technology Research and Development, 39 (3), 5-14.
- Steffe, L. & Gale, J. (Eds.) (1995). Constructivism in education. New Jersey: Lawrence Erlbaum Associates,Inc.
- Kirschner, P. A. (1992). Epistemology, practical work and academic skills in science education. Science and Education, 1, 273– 299.
- van Joolingen, W. R., de Jong, T., Lazonder, A. W., Savelsbergh, E., & Manlove, S. (2005). Co-Lab: Research and development of an on-line learning environment for collaborative scientific discovery learning. Computers in Human Behavior, 21, 671-688.
- Jonassen, D. H. (Ed.). (1996). Handbook of research for educational communications and technology. New York: Simon & Schuster.
- Johnson, G. (2009). Instructionism and Constructivism: Reconciling Two Very Good Ideas. International Journal of Special Education, 24(3), 90-98.
- Adams, G. L., & Engelmann, S. (1996). Research on Direct Instruction: 25 years beyond DISTAR. Seattle, WA: Educational Achievement Systems.
- Kameenui, E. J., & Carnine, D. W. (1998). Effective teaching strategies that accommodate diverse learners. Upper Saddle River, NJ: Merrill
- "Giving Students More Authority in Classroom Discussions". Edutopia. Retrieved 2022-11-13.
- Liebtag, Emily (2017-08-09). "8 Things to Look For in a Student-Centered Learning Environment". Getting Smart. Retrieved 2022-11-16.
- Kirschner, Paul A.; Sweller, John; Clark, Richard E. (June 2006). "Why Minimal Guidance During Instruction Does Not Work: An Analysis of the Failure of Constructivist, Discovery, Problem-Based, Experiential, and Inquiry-Based Teaching". Educational Psychologist. 41 (2): 75–86. doi:10.1207/s15326985ep4102_1. ISSN 0046-1520. S2CID 17067829.
- "Three benefits of a student-centered learning environment". blog.isb.cn. Retrieved 2022-11-16.
- "Active learning vs. passive learning: What's the best way to learn? - Classcraft Blog". Resource hub for schools and districts. 2018-09-06. Retrieved 2022-11-16.
- "Inquiry-based Learning: Explanation". www.thirteen.org. Retrieved 2022-11-16.
- "Student-Centered Learning: It Starts With the Teacher". Edutopia. Retrieved 2022-11-17.
- "Who's the better teacher, Sage on the Stage or Guide on the Side?". blog.isb.cn. Retrieved 2022-11-13.
- "Teacher-Centered Versus Learner-Centered Learning". KnowledgeWorks. Retrieved 2022-11-13.
- "The Teacher as a Guide: Letting Students Navigate Their Own Learning". Edutopia. Retrieved 2022-11-13.
- "Guide on the Side(lines)". Edutopia. Retrieved 2022-11-13.
- "Tools for Teaching: How to Transform Direct Instruction". Edutopia. Retrieved 2022-11-17.
- "Student-Centered Learning Environments: How and Why". Edutopia. Retrieved 2022-11-17.
- Mathematics Framework for California Public Schools: Kindergarten through Grade Twelve. Bureau of Publications, Sales Unit, California Dept. 1992. ISBN 978-0-8011-1033-7.
- Lee, Hee Seung; Anderson, John R. (2013-01-03). "Student Learning: What Has Instruction Got to Do With It?". Annual Review of Psychology. 64 (1): 445–469. doi:10.1146/annurev-psych-113011-143833. ISSN 0066-4308. PMID 22804771.
- Scott, David M.; Smith, Cameron; Chu, Man-Wai; Friesen, Sharon (2018-05-02). "Examining the Efficacy of Inquiry-based Approaches to Education". Alberta Journal of Educational Research. 64 (1): 35–54. doi:10.11575/ajer.v64i1.56439. ISSN 1923-1857.
- Hmelo-Silver, Cindy E.; Duncan, Ravit Golan; Chinn, Clark A. (2007-04-26). "Scaffolding and Achievement in Problem-Based and Inquiry Learning: A Response to Kirschner, Sweller, and Clark (2006)". Educational Psychologist. 42 (2): 99–107. doi:10.1080/00461520701263368. ISSN 0046-1520. S2CID 1360735.
- Brunstein, Angela; Betts, Shawn; Anderson, John R. (November 2009). "Practice enables successful learning under minimal guidance". Journal of Educational Psychology. 101 (4): 790–802. doi:10.1037/a0016656. ISSN 1939-2176.
- Mayer, Richard E. (January 2004). "Should there be a three-strikes rule against pure discovery learning? The case for guided methods of instruction". The American Psychologist. 59 (1): 14–19. doi:10.1037/0003-066X.59.1.14. ISSN 0003-066X. PMID 14736316.
- "American Educator Spring 2012". American Federation of Teachers. 2015-02-27. Retrieved 2022-11-13.
- SWELLER, JOHN; KIRSCHNER, PAUL A.; CLARK, RICHARD E. (2007-04-26). "Why Minimally Guided Teaching Techniques Do Not Work: A Reply to Commentaries". Educational Psychologist. 42 (2): 115–121. doi:10.1080/00461520701263426. ISSN 0046-1520. S2CID 18152560.
- Schmidt, Henk G.; Loyens, Sofie M. M.; Van Gog, Tamara; Paas, Fred (2007-04-26). "Problem-Based Learning is Compatible with Human Cognitive Architecture: Commentary on Kirschner, Sweller, and Clark (2006)". Educational Psychologist. 42 (2): 91–97. doi:10.1080/00461520701263350. ISSN 0046-1520. S2CID 11864555.
- Bremner, Nicholas; Sakata, Nozomi; Cameron, Leanne (2022-10-01). "The outcomes of learner-centred pedagogy: A systematic review". International Journal of Educational Development. 94: 102649. doi:10.1016/j.ijedudev.2022.102649. ISSN 0738-0593. S2CID 251078591.
- Sakata, Nozomi; Bremner, Nicholas; Cameron, Leanne (December 2022). "A systematic review of the implementation of learner‐centred pedagogy in low‐ and middle‐income countries". Review of Education. 10 (3). doi:10.1002/rev3.3365. ISSN 2049-6613. S2CID 252265258.
- "Is learner-centred pedagogy the answer in low- and middle-income countries?". www.bera.ac.uk. Retrieved 2022-11-19.
- educationrickshaw (2022-11-07). "PBL or Direct/Explicit Instruction: What Works?". Education Rickshaw. Retrieved 2022-11-16.
- Kalyuga, Slava; Singh, Anne-Marie (December 2016). "Rethinking the Boundaries of Cognitive Load Theory in Complex Learning". Educational Psychology Review. 28 (4): 831–852. doi:10.1007/s10648-015-9352-0. ISSN 1040-726X. S2CID 254468337.
- Bokhove, C.; Campbell, R. (2020). "Adapting teaching.". The Early Career Framework Handbook (PDF) (2nd ed.). Sage. pp. 75–83. ISBN 978-1-5297-2457-8.
- Kalyuga, Slava; Ayres, Paul; Chandler, Paul; Sweller, John (2003-01-01). "The Expertise Reversal Effect". Educational Psychologist. 38 (1): 23–31. doi:10.1207/S15326985EP3801_4. ISSN 0046-1520. S2CID 10519654.
- Trninic, Dragan (February 2018). "Instruction, repetition, discovery: restoring the historical educational role of practice". Instructional Science. 46 (1): 133–153. doi:10.1007/s11251-017-9443-z. ISSN 0020-4277. S2CID 255111187.
- van de Pol, Janneke, Volman, Monique, & Beishuizen, Jos. (2010). Scaffolding in Teacher–Student Interaction: A Decade of Research. Educational Psychology Review, 22:271–296 DOI 10.1007/s10648-010-9127-6
- Jumaat, Nurul, Farhana & Zaidatun Tasir (2014). Instructional Scaffolding in Online Learning Environment: A Meta-Analysis. Presented at the 2014 International Conference on Teaching and Learning in Computing and Engineering. doi: 10.1109/LaTiCE.2014.22
- "Search Funded Research Grants and Contracts - Details". ed.gov. Retrieved 31 December 2016.
- "Northern Illinois University, Faculty Development and Instructional Design Center" (PDF). Archived from the original (PDF) on 2013-06-26. Retrieved 2014-07-23.
- "Advance Organizer - EduTech Wiki". unige.ch. Retrieved 31 December 2016.
- Venn diagram
- Flowchart
- Rubric (academic)
- "Modeling". learnnc.org. Retrieved 31 December 2016.
- Tharp, R. G., & Gallimore, R. (1988). Rousing minds to life: Teaching, learning, and schooling in social context. Cambridge: Cambridge University Press.
- Renkl, A. (2005). The worked-out examples principle in multimedia learning. In Mayer, R.E. (Ed.), The Cambridge Handbook of Multimedia Learning. Cambridge: Cambridge University Press.View in a new window
- Nesbit, J. C., & Adesope, O. O. (2013). Concept maps for learning: Theory, research and design. In Schraw. G. (Ed.) Learning Through Visual Displays, pp. 303–328. Greenwich, CT: Information Age Publishing.View in a new window
- Cañas, A. J., & Novak, J. D., (2009). What is a concept map? Found on http://cmap.ihmc.us/docs/conceptmap.html
- "Kinds of Concept Maps". Archived from the original on 2014-07-29. Retrieved 2014-07-23.
- Mind map
- "handouts". wmin.ac.uk. Retrieved 31 December 2016.
- "Prompting as a Tool to Support Behavioral and Academic Independence". about.com. Archived from the original on 1 January 2017. Retrieved 31 December 2016.
- http://www.tcse.us/wp-content/uploads/2011/02/prompting_and_fadingtguide.pdf
- Hannafin, M., Hill, J. & Land, S. (1999). Student-centered learning and interactive multimedia: Status, issues, and implication. Contemporary Education 68(2): 94–99.
- Pea, R.D. (2004). The social and technological dimensions of scaffolding and related theoretical concepts for learning, education, and human activity. Journal of the Learning Sciences 13: 423–451.
- Reiser, B. (2004). Scaffolding complex learning: The mechanisms of structuring and problematizing student work. Journal of the Learning Sciences 13930: 273–304.
- Jumaat, Nurul, Farhana & Zaidatun, Tasir (2014). Instructional Scaffolding in Online Learning Environment: A Meta-Analysis. Presented at the 2014 International Conference on Teaching and Learning in Computing and Engineering. doi: 10.1109/LaTiCE.2014.22
- R. Reingold, R.Rimor, and A. Kalay, "Instructor's scaffolding in support of student's metacognition through a teacher education online course: a case study," Journal of Intercative Online Learning, vol. 7, no. 2, pp. 139-151, 2008
- M. J. Hannafin, S. Land and K. Oliver, "Open learning environments: Foundations, methods and models," in C.M. Reigeluth (Ed.), Instructional-design theories and models: A new paradigm of instructional theory, Mahwah, NJ: Lawrence Erlbaum Associates, 1999, pp. 115-140.
- Hill, J. & Hannafin, M. (1997). Cognitive strategies and learning from the World Wide Web. Educational Technology Research & Development 45(4): 37–64.
- Hadwin, A.F., Wozney, L. & Pantin, O. (2005). Scaffolding the appropriation of self- regulatory activity; A socio-cultural analysis of changes in teacher-student discourse about a graduate research portfolio. Instructional Science 33(5–6): 413–450
- Baylor, A. L. (2002). Agent-based learning environments for investigating teaching and learning. Journal of Educational Computing Research 26(3): 249–270.
- Puntambekar, S. & Hubscher, R. (2005). Tools for scaffolding students in a complex learning environment: What have we gained and what have we missed? Educational Psychologist 40(1): 1–12.
- H. Huang, C. Wu and N. Chen, "The effectiveness of using procedural scaffolding in a paper-plus-smartphone collaborative learning context," Computers & Education, vol. 59, no. 2, pp. 250- 259, 2012.
- R. Reingold, R.Rimor, and A. Kalay, "Instructor's scaffolding in support of student's metacognition through a teacher education online course: a case study," Journal of Intercative Online Learning, vol. 7, no. 2, pp. 139-151, 2008.
- Cho, Moon-Heum; Cho, YoonJung (April 2014). "Instructor scaffolding for interaction and students' academic engagement in online learning: Mediating role of perceived online class goal structures". The Internet and Higher Education. 21: 25–30. doi:10.1016/j.iheduc.2013.10.008.
- Tuckman, Bruce (Summer 2005). "Relations of academic procrastination, rationalizations, and performance in a web course with deadlines". Psychological Reports. 96 (4): 1015–1021. doi:10.2466/PR0.96.4.1015-1021. PMID 16173372.
- Cho, Moon-Heum; Shen, Demei (Summer 2013). "Self-regulation in online learning". Distance Education. 34 (3): 290–301. doi:10.1080/01587919.2013.835770. S2CID 144928828.
- Artino, Anthony; Stephens, Jason (December 2009). "Academic motivation and self-regulation: A comparative analysis of undergraduate and graduate students learning online". The Internet and Higher Education. 12 (3–4): 146–151. doi:10.1016/j.iheduc.2009.02.001.
References
- Belland, Brian., Glazewski, Krista D., and Richardson, Jennifer C. (2008). A scaffolding framework to support the construction of evidence-based arguments among middle school students. Education Tech Research Dev., 56, 401–422.
- Beed, P., Hawkins, M., & Roller, C. (1991). Moving learners towards independence: the power of scaffolded instruction. The Reading Teacher, 44(9), 648–655
- Bodrova, E., & Leong, D. J. (1998). Scaffolding emergent writing in the zone of proximal development. Literacy Teaching and Learning, 3(2), 1–18.
- Bransford, J., Brown, A., & Cocking, R. (2000). How People Learn: Brain, Mind, and Experience & School. Washington, DC: National Academy Press.
- Cazden, C. B. (1983). Adult assistance to language development: Scaffolds, models, and direct instruction. In R. P. Parker & F. A. Davis (Eds.), Developing literacy:Young children's use of language (pp. 3–17). Newark, DE: International Reading Association.
- Clay, M. M. (2005). Literacy lessons designed for individuals: Teaching procedures. Portsmouth, NH: Heinemann.
- Cox, B. E. (1994). Young children's regulatory talk: Evidence of emerging metacognitive control over literary products and processes. In R. B. Ruddell, M. R. Ruddell, & H. Singer (Eds.), Theoretical models and process of reading (pp. 733–756). Newark, DE: IRA.
- Dorn, L. (1996). A Vygotskian perspective on literacy acquisition: Talk and action in the child's construction of literate awareness. Literacy Teaching and Learning: An International Journal of Early Reading and Writing, 2(2), 15–40.
- Dyson, A. H. (1983). The role of oral language in early writing process. Research in the Teaching of English, 17(1), 1–30.
- Dyson, A. H. (1991). Viewpoints: The word and the world - reconceptualizing written language development or do rainbows mean a lot to little girls? Research in the Teaching of English, 25, 97–123.
- Ebadi, Saman, Khatib, Mohamad, and Shabani, Karim (2010). Vygotsky's Zone of Proximal Development: Instructional Implications and Teacher's Professional Development. English Language Teaching, 3(4), 241–245.
- Ellis, E., & Worthington, L. (1994). Research Synthesis on Effective Teaching Principles and the Design of Quality Tools for Educators. University of Oregon. Retrieved October 25, 2013, from http://people.uncw.edu/kozloffm/ellisressynth.pdf
- Hoffman, B., & Ritchie, D. (1997). The problems with problem based learning. Instructional Science 25(2) 97–115.
- Holton, Derek, and Clark, David (2006). Scaffolding and metacognition. International Journal of Mathematical Education in Science and Technology, 37, 127–143.
- Johnson, G. (2009). Instructionism and Constructivism: Reconciling Two Very Good Ideas. International Journal of Special Education, 24(3), 90–98.
- Jonassen, D. H. (1991). Objectivism versus constructivism: do we need a new philosophical paradigm? Educational Technology Research and Development, 39 (3), 5–14.
- Jonassen, D. H. (Ed.). (1996). Handbook of research for educational communications and technology. New York: Simon & Schuster.
- Lai, Ming and Law, Nancy (2006). Peer scaffolding of knowledge building through collaborative groups with differential learning experiences. J. Educational Computing Research, 35, 123–144.
- Lajoie, Sussane (2005). Extending the scaffolding metaphor. Instructional Science, 33, 541–557.
- Luria, A. R. (1983). The development of writing in the child. In M. Martlew (Ed.), The psychology of written language: Developmental and educational perspectives (pp. 237–277). New York: Wiley.
- Ninio, A. and Bruner, J. (1978). The achievement and antecedents of labelling. Journal of Child Language, 5, 1–15.
- Palincsar, A. S. (1986). The role of dialogue in providing scaffolded instruction. Educational Psychologist, 21(1 & 2), 73–98.
- Raymond, E. (2000). Cognitive Characteristics. Learners with Mild Disabilities (pp. 169–201). Needham Heights, MA: Allyn & Bacon, A Pearson Education Company.
- Rodgers, E. M. (2004). Interactions that scaffold reading performance. Journal of Literacy Research, 36(4), 501–532.
- Rosenshine, B., & Meister, C. (1992). The use of scaffolds for teaching higher-level cognitive strategies. Educational Leadership, 49(7), 26–33.
- Sawyer, R. Keith. (2006). The Cambridge Handbook of the Learning Sciences. New York: Cambridge University Press.
- Simons, Krista D., and Klein, James D. (2007). The impact of scaffolding and student achievement levels in a problem-based learning environment. Instructional Science, 35, 41–72.
- Smagorinsky, P. (2007). Vygotsky and the social dynamic of classrooms. English Journal, 97(2), 61–66.
- Teale, W. H. & Sulzby, E. (Eds.). (1986). Emergent literacy: Writing and reading. Norwood, NJ: Ablex Publishing Corporation.
- Vygotsky, L. S. (1987). Thinking and speech. In L. S. Vygotsky, Collected works (vol. 1, pp. 39–285) (R. Rieber & A. Carton, Eds; N. Minick, Trans.). New York: Plenum. (Original works published in 1934, 1960).
- Wertsch, J. V. (1985). Vygotsky and the social formation of mind. Cambridge, MA: Harvard University Press.
- Wertsch, J. V. & Stone, C. (1984). A social interactional analysis of learning disabilities remediation. Journal of Learning Disabilities, 17(4), 194–199.
- Wise, A. F., & O'Neill, D. K. (2009). Beyond More Versus Less: A Reframing of the Debate on Instructional Guidance. In S. Tobias & T. M. Duffy (Eds.), Constructivist Instruction: Success or Failure? (pp. 82–105). New York: Routledge.
- Wood, D., & Wood, H. (1996). Vygotsky, tutoring and learning. Oxford Review of Education, 22(1), 5–16.
- Wood, D., Bruner, J., & Ross, G. (1978). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, 17, 89–100.
- Wood, D. J., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychiatry and Psychology, 17(2), 89–100.
- Yelland, Nicola, and Masters, Jennifer (2007). Rethinking scaffolding in the information age. Computers and Education, 48, 362–382.