Scanning flow cell

Scanning Flow Cell (SFC) is an electrochemical technique, based on the principle of channel electrode. The electrolyte is continuously flowing over a substrate that is introduced externally on translation stage. In contrast to the reference and counter electrode that are integrated in the main channel or placed in side compartments connected with a salt bridge.

CAD model of the Scanning Flow Cell including spatial distribution of the electrodes

SFC utilizes V-formed geometry with a small opening on the bottom (in range of 0.2-1mm diameter) used to establish the contact with sample. The convective flow is sustained also in non-contact mode of operation that allows easy exchange of the working electrode.[1]

Application

The SFC is employed for combinatorial and high-throughput electrochemical studies. Due to its non-homogenous flow profile distribution, it is currently used for comparative kinetic studies. SFC is predominantly used for coupling of electrochemical measurements with post analytical techniques like UV-Vis, ICP-MS, ICP-OES etc. This makes possible a direct correlation of electrochemical and spectrometric signal. This methodology was successfully applied for corrosion studies.[2][3]

References

  1. "Scanning Flow Cell". www.mpie.de. Retrieved 2023-09-23.
  2. Topalov, A.A.; and Katsounaros, I.; Michael, A.; Cherevko, S.; Meier, J.C.; Klemm, S.O.; Mayrhofer, K.J.J. (2012). "Dissolution of Platinum: Limits for the Deployment of Electrochemical Energy Conversion?". Angewandte Chemie International Edition. 51 (50): 12613–12615. doi:10.1002/anie.201207256. ISSN 1521-3773. PMC 3556695. PMID 23124819.
  3. Klemm, S.O.; Topalov, A.A.; Laska, C.A.; Mayrhofer, K.J.J. (2011). "Coupling of a high throughput microelectrochemical cell with online multielemental trace analysis by ICP-MS". Electrochemistry Communications. 13 (12): 1533–1535. doi:10.1016/j.elecom.2011.10.017. ISSN 1388-2481.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.