Schur class

In complex analysis, the Schur class is the set of holomorphic functions defined on the open unit disk and satisfying . Named after Issai Schur the Schur class plays an important role in classical moment and interpolation problems.

Schur function

Consider the Carathéodory function of a unique probability measure on the unit circle given by

where implies .[1] Then the association

sets up a one-to-one correspondence between Carathéodory functions and Schur functions given by the inverse formula:

Schur Algorithm

Schur's algorithm is an iterative construction based on Möbius transformations that maps one Schur function to another.[1][2] The algorithm, written as

defines an infinite sequence of Schur functions and Schur parameters (also called Verblunsky coefficient or reflection coefficient).[3] The algorithm stops in case .

One can invert the transformation by repeatedly using the fact that

which gives a continued fraction expansion of the Schur function

and in particular

.

See also

References

  • Schur, I. (1918), "Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. I, II", J. Reine Angew. Math. (in German), Berlin: Walter de Gruyter, 147: 205–232, doi:10.1515/crll.1917.147.205, JFM 46.0475.01
  • Simon, Barry (2005), Orthogonal polynomials on the unit circle. Part 1. Classical theory, American Mathematical Society Colloquium Publications, vol. 54, Providence, R.I.: American Mathematical Society, ISBN 978-0-8218-3446-6, MR 2105088
  • Simon, Barry (2005), Orthogonal polynomials on the unit circle. Part 2. Spectral theory, American Mathematical Society Colloquium Publications, vol. 54, Providence, R.I.: American Mathematical Society, ISBN 978-0-8218-3675-0, MR 2105089
  1. Simon, Barry (2005), Orthogonal polynomials on the unit circle. Part 1. Classical theory, American Mathematical Society Colloquium Publications, vol. 54, Providence, R.I.: American Mathematical Society, ISBN 978-0-8218-3446-6, MR 2105088
  2. Conway, John B. (1978). Functions of One Complex Variable I (Graduate Texts in Mathematics 11). Springer-Verlag. p. 127. ISBN 978-0-387-90328-6.
  3. Simon, Barry (2011). Szegő's theorem and its descendants: spectral theory for L² perturbations of orthogonal polynomials. Princeton University Press. p. 30. ISBN 978-0-691-14704-8.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.