Small retrosnub icosicosidodecahedron

In geometry, the small retrosnub icosicosidodecahedron (also known as a retrosnub disicosidodecahedron, small inverted retrosnub icosicosidodecahedron, or retroholosnub icosahedron) is a nonconvex uniform polyhedron, indexed as U72. It has 112 faces (100 triangles and 12 pentagrams), 180 edges, and 60 vertices.[1] It is given a Schläfli symbol sr{⁵/₃,³/₂}.

Small retrosnub icosicosidodecahedron
TypeUniform star polyhedron
ElementsF = 112, E = 180
V = 60 (χ = 8)
Faces by sides(40+60){3}+12{5/2}
Coxeter diagram
Wythoff symbol| 3/2 3/2 5/2
Symmetry groupIh, [5,3], *532
Index referencesU72, C91, W118
Dual polyhedronSmall hexagrammic hexecontahedron
Vertex figure
(35.5/3)/2
Bowers acronymSirsid
3D model of a small retrosnub icosicosidodecahedron

The 40 non-snub triangular faces form 20 coplanar pairs, forming star hexagons that are not quite regular. Unlike most snub polyhedra, it has reflection symmetries.

George Olshevsky nicknamed it the yog-sothoth (after the Cthulhu Mythos deity).[2][3]

Convex hull

Its convex hull is a nonuniform truncated dodecahedron.


Truncated dodecahedron

Convex hull

Small retrosnub icosicosidodecahedron

Cartesian coordinates

Cartesian coordinates for the vertices of a small retrosnub icosicosidodecahedron are all the even permutations of

(±(1-ϕ−α), 0, ±(3−ϕα))
(±(ϕ-1−α), ±2, ±(2ϕ-1−ϕα))
(±(ϕ+1−α), ±2(ϕ-1), ±(1−ϕα))

where ϕ = (1+5)/2 is the golden ratio and α = 3ϕ−2.

See also

References

  1. Maeder, Roman. "72: small retrosnub icosicosidodecahedron". MathConsult.
  2. Birrell, Robert J. (May 1992). The Yog-sothoth: analysis and construction of the small inverted retrosnub icosicosidodecahedron (M.S.). California State University.
  3. Bowers, Jonathan (2000). "Uniform Polychora" (PDF). In Reza Sarhagi (ed.). Bridges 2000. Bridges Conference. pp. 239–246.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.