Structural identifiability
In the area of system identification, a dynamical system is structurally identifiable if it is possible to infer its unknown parameters by measuring its output over time. This problem arises in many branch of applied mathematics, since dynamical systems (such as the ones described by ordinary differential equations) are commonly utilized to model physical processes and these models contain unknown parameters that are typically estimated using experimental data.[1][2][3]
However, in certain cases, the model structure may not permit a unique solution for this estimation problem, even when the data is continuous and free from noise. To avoid potential issues, it is recommended to verify the uniqueness of the solution in advance, prior to conducting any actual experiments. The lack of structural identifiability implies that there are multiple solutions for the problem of system identification, and the impossibility of distinguishing between these solutions suggests that the system has poor forecasting power as a model.[4] On the other hand, control systems have been proposed with the goal of rendering the closed-loop system unidentifiable, decrease its susceptibility to covert attacks targeting cyber-physical systems.[5]
Examples
Linear time-invariant system
Source[2]
Consider a linear time-invariant system with the following state-space representation:
and with initial conditions given by and . The solution of the output is
which implies that the parameters and are not structurally identifiable. For instance, the parameters generates the same output as the parameters .
Non-linear system
Source[3]
A model of a possible glucose homeostasis mechanism is given by the differential equations[6]
where (c, si, p, α, γ) are parameters of the system, and the states are the plasma glucose concentration G, the plasma insulin concentration I, and the beta-cell functional mass β. It is possible to show that the parameters p and si are not structurally identifiable: any numerical choice of parameters p and si that have the same product psi are indistinguishable.[3]
Practical identifiability
Structural identifiability is assessed by analyzing the dynamical equations of the system, and does not take into account possible noises in the measurement of the output. In contrast, practical non-identifiability also takes noises into account.[1][7]
Other related notions
The notion of structurally identifiable is closely related to observability, which refers to the capacity of inferring the state of the system by measuring the trajectories of the system output. It is also closely related to data informativity, which refers to the proper selection of inputs that enables the inference of the unknown parameters.[8]
The (lack of) structural identifiability is also important in the context of dynamical compensation of physiological control systems. These systems should ensure a precise dynamical response despite variations in certain parameters.[9][10] In other words, while in the field of systems identification, unidentifiability is considered a negative property, in the context of dynamical compensation, unidentifiability becomes a desirable property.[10]
Software
There exist many software that can be used for analyzing the identifiability of a system, including non-linear systems:[11]
- PottersWheel: MATLAB toolbox that uses profile likelihood for structural and practical identifiability analysis.
- Julia library for assessing structural parameter identifiability.[12]
- STRIKE-GOLDD: MATLAB toolbox for structural identifiability analysis.[13]
References
- Miao, Hongyu; Xia, Xiaohua; Perelson, Alan S.; Wu, Hulin (2011). "On Identifiability of Nonlinear ODE Models and Applications in Viral Dynamics". SIAM Review. 53 (1): 3–39. doi:10.1137/090757009. ISSN 0036-1445. PMC 3140286. PMID 21785515. (Erratum: doi:10.1137/23M1568958)
- Raue, A.; Karlsson, J.; Saccomani, M. P.; Jirstrand, M.; Timmer, J. (2014-05-15). "Comparison of approaches for parameter identifiability analysis of biological systems". Bioinformatics. 30 (10): 1440–1448. doi:10.1093/bioinformatics/btu006. ISSN 1367-4803. PMID 24463185.
- Villaverde, Alejandro F. (2019-01-01). "Observability and Structural Identifiability of Nonlinear Biological Systems". Complexity. 2019: 1–12. doi:10.1155/2019/8497093. ISSN 1076-2787.
- Fiacchini, Mirko; Alamir, Mazen (2021). "The Ockham's razor applied to COVID-19 model fitting French data". Annual Reviews in Control. 51: 500–510. doi:10.1016/j.arcontrol.2021.01.002. PMC 7846253. PMID 33551664.
- Mao, Xiangyu; He, Jianping (2023). "Unidentifiability of System Dynamics: Conditions and Controller Design". arXiv:2308.15493.
- Karin, Omer; Swisa, Avital; Glaser, Benjamin; Dor, Yuval; Alon, Uri (2016). "Dynamical compensation in physiological circuits". Molecular Systems Biology. 12 (11): 886. doi:10.15252/msb.20167216. ISSN 1744-4292. PMC 5147051. PMID 27875241.
- Raue, A.; Kreutz, C.; Maiwald, T.; Bachmann, J.; Schilling, M.; Klingmüller, U.; Timmer, J. (2009-08-01). "Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood". Bioinformatics. 25 (15): 1923–1929. doi:10.1093/bioinformatics/btp358. ISSN 1460-2059. PMID 19505944.
- Gevers, Michel; Bazanella, Alexandre S.; Coutinho, Daniel F.; Dasgupta, Soura (2013). "Identifiability and excitation of polynomial systems". 52nd IEEE Conference on Decision and Control. Firenze: IEEE. pp. 4278–4283. doi:10.1109/CDC.2013.6760547. ISBN 978-1-4673-5717-3. S2CID 7796419.
- Karin, Omer; Swisa, Avital; Glaser, Benjamin; Dor, Yuval; Alon, Uri (2016). "Dynamical compensation in physiological circuits". Molecular Systems Biology. 12 (11): 886. doi:10.15252/msb.20167216. ISSN 1744-4292. PMC 5147051. PMID 27875241.
- Sontag, Eduardo D. (2017-04-06). Komarova, Natalia L. (ed.). "Dynamic compensation, parameter identifiability, and equivariances". PLOS Computational Biology. 13 (4): e1005447. Bibcode:2017PLSCB..13E5447S. doi:10.1371/journal.pcbi.1005447. ISSN 1553-7358. PMC 5398758. PMID 28384175.
- Barreiro, Xabier Rey; Villaverde, Alejandro F. (2023-01-31). "Benchmarking tools for a priori identifiability analysis". Bioinformatics. 39 (2): btad065. doi:10.1093/bioinformatics/btad065. ISSN 1367-4811. PMC 9913045. PMID 36721336.
- Dong, Ruiwen; Goodbrake, Christian; Harrington, Heather A.; Pogudin, Gleb (2023-03-31). "Differential Elimination for Dynamical Models via Projections with Applications to Structural Identifiability". SIAM Journal on Applied Algebra and Geometry. 7 (1): 194–235. arXiv:2111.00991. doi:10.1137/22M1469067. ISSN 2470-6566. S2CID 245650629.
- Díaz-Seoane, Sandra; Rey-Barreiro, Xabier; Villaverde, Alejandro F. (2022-07-15). "STRIKE-GOLDD 4.0: user-friendly, efficient analysis of structural identifiability and observability". arXiv:2207.07346 [eess.SY].