Truncation

In mathematics and computer science, truncation is limiting the number of digits right of the decimal point.

Truncation and floor function

Truncation of positive real numbers can be done using the floor function. Given a number to be truncated and , the number of elements to be kept behind the decimal point, the truncated value of x is

However, for negative numbers truncation does not round in the same direction as the floor function: truncation always rounds toward zero, the floor function rounds towards negative infinity. For a given number , the function ceil is used instead.

In some cases trunc(x,0) is written as [x]. See Notation of floor and ceiling functions.

Causes of truncation

With computers, truncation can occur when a decimal number is typecast as an integer; it is truncated to zero decimal digits because integers cannot store non-integer real numbers.

In algebra

An analogue of truncation can be applied to polynomials. In this case, the truncation of a polynomial P to degree n can be defined as the sum of all terms of P of degree n or less. Polynomial truncations arise in the study of Taylor polynomials, for example.[1]

See also

References

  1. Spivak, Michael (2008). Calculus (4th ed.). p. 434. ISBN 978-0-914098-91-1.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.