Vapour pressure of water

The vapor pressure of water is the pressure exerted by molecules of water vapor in gaseous form (whether pure or in a mixture with other gases such as air). The saturation vapor pressure is the pressure at which water vapor is in thermodynamic equilibrium with its condensed state. At pressures higher than vapor pressure, water would condense, while at lower pressures it would evaporate or sublimate. The saturation vapor pressure of water increases with increasing temperature and can be determined with the Clausius–Clapeyron relation. The boiling point of water is the temperature at which the saturated vapor pressure equals the ambient pressure.

Vapor pressure of water (0–100 °C)[1]
T, °CT, °FP, kPaP, torrP, atm
0320.61134.58510.0060
5410.87266.54500.0086
10501.22819.21150.0121
15591.705612.79310.0168
20682.338817.54240.0231
25773.169023.76950.0313
30864.245531.84390.0419
35955.626742.20370.0555
401047.381455.36510.0728
451139.589871.92940.0946
5012212.344092.58760.1218
5513115.7520118.14970.1555
6014019.9320149.50230.1967
6514925.0220187.68040.2469
7015831.1760233.83920.3077
7516738.5630289.24630.3806
8017647.3730355.32670.4675
8518557.8150433.64820.5706
9019470.1170525.92080.6920
9520384.5290634.01960.8342
100212101.3200759.96251.0000

Calculations of the (saturation) vapor pressure of water are commonly used in meteorology. The temperature-vapor pressure relation inversely describes the relation between the boiling point of water and the pressure. This is relevant to both pressure cooking and cooking at high altitudes. An understanding of vapor pressure is also relevant in explaining high altitude breathing and cavitation.

Approximation formulas

There are many published approximations for calculating saturated vapor pressure over water and over ice. Some of these are (in approximate order of increasing accuracy):

Name Formula Description
"Eq. 1" (August equation) P is the vapour pressure in mmHg and T is the temperature in kelvins. Constants are unattributed.
The Antoine equation T is in degrees Celsius (°C) and the vapour pressure P is in mmHg. The (unattributed) constants are given as
A B C Tmin, °C Tmax, °C
8.071311730.63233.426199
8.140191810.94244.485100374
August-Roche-Magnus (or Magnus-Tetens or Magnus) equation Temperature T is in °C and vapour pressure P is in kilopascals (kPa). The coefficients given here correspond to equation 21 in Alduchov and Eskridge (1996).[2]

See also discussion of Clausius-Clapeyron approximations used in meteorology and climatology.

Tetens equation T is in °C and  P is in kPa
The Buck equation. T is in °C and P is in kPa.
The Goff-Gratch (1946) equation.[3] (See article; too long)

Accuracy of different formulations

Here is a comparison of the accuracies of these different explicit formulations, showing saturation vapor pressures for liquid water in kPa, calculated at six temperatures with their percentage error from the table values of Lide (2005):

T (°C)P (Lide Table)P (Eq 1)P (Antoine)P (Magnus)P (Tetens)P (Buck)P (Goff-Gratch)
00.61130.6593 (+7.85%)0.6056 (-0.93%)0.6109 (-0.06%)0.6108 (-0.09%)0.6112 (-0.01%)0.6089 (-0.40%)
202.33882.3755 (+1.57%)2.3296 (-0.39%)2.3334 (-0.23%)2.3382 (+0.05%)2.3383 (-0.02%)2.3355 (-0.14%)
355.62675.5696 (-1.01%)5.6090 (-0.31%)5.6176 (-0.16%)5.6225 (+0.04%)5.6268 (+0.00%)5.6221 (-0.08%)
5012.34412.065 (-2.26%)12.306 (-0.31%)12.361 (+0.13%)12.336 (+0.08%)12.349 (+0.04%)12.338 (-0.05%)
7538.56337.738 (-2.14%)38.463 (-0.26%)39.000 (+1.13%)38.646 (+0.40%)38.595 (+0.08%)38.555 (-0.02%)
100101.32101.31 (-0.01%)101.34 (+0.02%)104.077 (+2.72%)102.21 (+1.10%)101.31 (-0.01%)101.32 (0.00%)

A more detailed discussion of accuracy and considerations of the inaccuracy in temperature measurements is presented in Alduchov and Eskridge (1996). The analysis here shows the simple unattributed formula and the Antoine equation are reasonably accurate at 100 °C, but quite poor for lower temperatures above freezing. Tetens is much more accurate over the range from 0 to 50 °C and very competitive at 75 °C, but Antoine's is superior at 75 °C and above. The unattributed formula must have zero error at around 26 °C, but is of very poor accuracy outside a narrow range. Tetens' equations are generally much more accurate and arguably more straightforward for use at everyday temperatures (e.g., in meteorology). As expected, Buck's equation for T > 0 °C is significantly more accurate than Tetens, and its superiority increases markedly above 50 °C, though it is more complicated to use. The Buck equation is even superior to the more complex Goff-Gratch equation over the range needed for practical meteorology.

Numerical approximations

For serious computation, Lowe (1977)[4] developed two pairs of equations for temperatures above and below freezing, with different levels of accuracy. They are all very accurate (compared to Clausius-Clapeyron and the Goff-Gratch) but use nested polynomials for very efficient computation. However, there are more recent reviews of possibly superior formulations, notably Wexler (1976, 1977),[5][6] reported by Flatau et al. (1992).[7]

Examples of modern use of these formulae can additionally be found in NASA's GISS Model-E and Seinfeld and Pandis (2006). The former is an extremely simple Antoine equation, while the latter is a polynomial.[8]

Graphical pressure dependency on temperature

Vapour pressure diagrams of water; data taken from Dortmund Data Bank. Graphics shows triple point, critical point and boiling point of water.

See also

References

  1. Lide, David R., ed. (2004). CRC Handbook of Chemistry and Physics (85th ed.). CRC Press. pp. 6–8. ISBN 978-0-8493-0485-9.
  2. Alduchov, O.A.; Eskridge, R.E. (1996). "Improved Magnus form approximation of saturation vapor pressure". Journal of Applied Meteorology. 35 (4): 601–9. Bibcode:1996JApMe..35..601A. doi:10.1175/1520-0450(1996)035<0601:IMFAOS>2.0.CO;2.
  3. Goff, J.A., and Gratch, S. 1946. Low-pressure properties of water from −160 to 212 °F. In Transactions of the American Society of Heating and Ventilating Engineers, pp 95–122, presented at the 52nd annual meeting of the American Society of Heating and Ventilating Engineers, New York, 1946.
  4. Lowe, P.R. (1977). "An approximating polynomial for the computation of saturation vapor pressure". Journal of Applied Meteorology. 16 (1): 100–4. Bibcode:1977JApMe..16..100L. doi:10.1175/1520-0450(1977)016<0100:AAPFTC>2.0.CO;2.
  5. Wexler, A. (1976). "Vapor pressure formulation for water in range 0 to 100°C. A revision". Journal of Research of the National Bureau of Standards Section A. 80A (5–6): 775–785. doi:10.6028/jres.080a.071. PMC 5312760. PMID 32196299.
  6. Wexler, A. (1977). "Vapor pressure formulation for ice". Journal of Research of the National Bureau of Standards Section A. 81A (1): 5–20. doi:10.6028/jres.081a.003.
  7. Flatau, P.J.; Walko, R.L.; Cotton, W.R. (1992). "Polynomial fits to saturation vapor pressure". Journal of Applied Meteorology. 31 (12): 1507–13. Bibcode:1992JApMe..31.1507F. doi:10.1175/1520-0450(1992)031<1507:PFTSVP>2.0.CO;2.
  8. Clemenzi, Robert. "Water Vapor - Formulas". mc-computing.com.

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.