Web (differential geometry)

In mathematics, a web permits an intrinsic characterization in terms of Riemannian geometry of the additive separation of variables in the Hamilton–Jacobi equation.[1][2]

Formal definition

An orthogonal web on a Riemannian manifold (M,g) is a set of n pairwise transversal and orthogonal foliations of connected submanifolds of codimension 1 and where n denotes the dimension of M.

Note that two submanifolds of codimension 1 are orthogonal if their normal vectors are orthogonal and in a nondefinite metric orthogonality does not imply transversality.

Alternative definition

Given a smooth manifold of dimension n, an orthogonal web (also called orthogonal grid or Ricci’s grid) on a Riemannian manifold (M,g) is a set[3] of n pairwise transversal and orthogonal foliations of connected submanifolds of dimension 1.

Remark

Since vector fields can be visualized as stream-lines of a stationary flow or as Faraday’s lines of force, a non-vanishing vector field in space generates a space-filling system of lines through each point, known to mathematicians as a congruence (i.e., a local foliation). Ricci’s vision filled Riemann’s n-dimensional manifold with n congruences orthogonal to each other, i.e., a local orthogonal grid.

Differential geometry of webs

A systematic study of webs was started by Blaschke in the 1930s. He extended the same group-theoretic approach to web geometry.

Classical definition

Let be a differentiable manifold of dimension N=nr. A d-web W(d,n,r) of codimension r in an open set is a set of d foliations of codimension r which are in general position.

In the notation W(d,n,r) the number d is the number of foliations forming a web, r is the web codimension, and n is the ratio of the dimension nr of the manifold M and the web codimension. Of course, one may define a d-web of codimension r without having r as a divisor of the dimension of the ambient manifold.

See also

Notes

  1. S. Benenti (1997). "Intrinsic characterization of the variable separation in the Hamilton-Jacobi equation". J. Math. Phys. 38 (12): 6578–6602. Bibcode:1997JMP....38.6578B. doi:10.1063/1.532226.
  2. Chanu, Claudia; Rastelli, Giovanni (2007). "Eigenvalues of Killing Tensors and Separable Webs on Riemannian and Pseudo-Riemannian Manifolds". SIGMA. 3: 021, 21 pages. arXiv:nlin/0612042. Bibcode:2007SIGMA...3..021C. doi:10.3842/sigma.2007.021. S2CID 3100911.
  3. G. Ricci-Curbastro (1896). "Dei sistemi di congruenze ortogonali in una varietà qualunque". Mem. Acc. Lincei. 2 (5): 276–322.

References

  • Sharpe, R. W. (1997). Differential Geometry: Cartan's Generalization of Klein's Erlangen Program. New York: Springer. ISBN 0-387-94732-9.
  • Dillen, F.J.E.; Verstraelen, L.C.A. (2000). Handbook of Differential Geometry. Vol. 1. Amsterdam: North-Holland. ISBN 0-444-82240-2.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.