Pseudomonas putida
Pseudomonas putida is a Gram-negative, rod-shaped, saprotrophic soil bacterium.
Pseudomonas putida | |
---|---|
Scientific classification | |
Domain: | Bacteria |
Phylum: | Pseudomonadota |
Class: | Gammaproteobacteria |
Order: | Pseudomonadales |
Family: | Pseudomonadaceae |
Genus: | Pseudomonas |
Species: | P. putida |
Binomial name | |
Pseudomonas putida Trevisan, 1889 | |
Type strain | |
ATCC 12633 CCUG 12690 | |
Synonyms | |
Bacillus fluorescens putidus" Flügge 1886 |
Based on 16S rRNA analysis, P. putida was taxonomically confirmed to be a Pseudomonas species (sensu stricto) and placed, along with several other species, in the P. putida group, to which it lends its name.[1] However, phylogenomic analysis[2][3] of complete genomes from the entire Pseudomonas genus clearly showed that the genomes that were named as P. putida did not form a monophyletic clade, but were dispersed and formed a wider evolutionary group (the putida group) that included other species as well, such as P. alkylphenolia, P. alloputida, P. monteilii, P. cremoricolorata, P. fulva, P. parafulva, P. entomophila, P. mosselii,P. plecoglossicida and several genomic species (new species which are currentely not validely defined as new species.[2]
A variety of P. putida, called multiplasmid hydrocarbon-degrading Pseudomonas, is the first patented organism in the world. Because it is a living organism, the patent was disputed and brought before the United States Supreme Court in the historic court case Diamond v. Chakrabarty, which the inventor, Ananda Mohan Chakrabarty, won. It demonstrates a very diverse metabolism, including the ability to degrade organic solvents such as toluene.[4] This ability has been put to use in bioremediation, or the use of microorganisms to degrade environmental pollutants. Use of P. putida is preferable to some other Pseudomonas species capable of such degradation, as it is a safe species of bacteria, unlike P. aeruginosa, for example, which is an opportunistic human pathogen.
Genomics
The protein count and GC content of the (63) genomes that belong to the P. putida wider evolutionary group (as defined by a phylogenomic analysis of 494 complete genomes from the entire Pseudomonas genus) ranges between 3748–6780 (average: 5197) and between 58.7–64.4% (average: 62.3%), respectively.[3] The core proteome of the analyzed 63 genomes (of the P. putida group) comprised 1724 proteins, of which only 1 core protein was specific for this group, meaning that it was absent in all other analyzed Pseudomonads.[3]
Uses
Bioremediation
The diverse metabolism of wild-type strains of P. putida may be exploited for bioremediation; for example, it has been shown in the laboratory to function as a soil inoculant to remedy naphthalene-contaminated soils.[5]
Pseudomonas putida is capable of converting styrene oil into the biodegradable plastic PHA.[6][7] This may be of use in the effective recycling of polystyrene foam, otherwise thought to be not biodegradable.
Biocontrol
Pseudomonas putida has demonstrated potential biocontrol properties, as an effective antagonist of damping off diseases such as Pythium[8] and Fusarium.[9]
Oligonucleotide usage signatures of the P. alloputida KT2440 genome
Di- to pentanucleotide usage and the list of the most abundant octa- to tetradecanucleotides are useful measures of the bacterial genomic signature. The P. putida KT2440 chromosome is characterized by strand symmetry and intrastrand parity of complementary oligonucleotides. Each tetranucleotide occurs with similar frequency on the two strands. Tetranucleotide usage is biased by G+C content and physicochemical constraints such as base stacking energy, dinucleotide propeller twist angle, or trinucleotide bendability. The 105 regions with atypical oligonucleotide composition can be differentiated by their patterns of oligonucleotide usage into categories of horizontally acquired gene islands, multidomain genes or ancient regions such as genes for ribosomal proteins and RNAs. A species-specific extragenic palindromic sequence is the most common repeat in the genome that can be exploited for the typing of P. putida strains. In the coding sequence of P. putida, LLL is the most abundant tripeptide.[10] Phylogenomic analysis reclassified the strain KT2440 in a new species Pseudomonas alloputida.[2]
Organic synthesis
Pseudomonas putida's amenability to genetic manipulation has allowed it to be used in the synthesis of numerous organic pharmaceutical and agricultural compounds from various substrates.[11]
References
- Anzai; Kim, H; Park, JY; Wakabayashi, H; Oyaizu, H; et al. (Jul 2000). "Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence". Int J Syst Evol Microbiol. 50 (4): 1563–89. doi:10.1099/00207713-50-4-1563. PMID 10939664.
- "Keshavarz-Tohid"; Vacheron, J; Dubost, A; Prigent-Combaret, C; Taheri, P; Tarighi, S; Taghavi, SM; Moënne-Loccoz, Y; Muller, D; et al. (May 2019). "Genomic, phylogenetic and catabolic re-assessment of the Pseudomonas putida clade supports the delineation of Pseudomonas alloputida sp. nov., Pseudomonas inefficax sp. nov., Pseudomonas persica sp. nov., and Pseudomonas shirazica sp. nov". Syst Appl Microbiol. 42 (Pt 1): 468–480. doi:10.1016/j.syapm.2019.04.00. PMID 31122691.
- Nikolaidis, Marios; Mossialos, Dimitris; Oliver, Stephen G.; Amoutzias, Grigorios D. (2020-07-24). "Comparative Analysis of the Core Proteomes among the Pseudomonas Major Evolutionary Groups Reveals Species-Specific Adaptations for Pseudomonas aeruginosa and Pseudomonas chlororaphis". Diversity. 12 (8): 289. doi:10.3390/d12080289. ISSN 1424-2818.
- Marqués, Silvia; Ramos, Juan L. (1993). "Transcriptional control of the Pseudomonas putida TOL plasmid catabolic pathways". Molecular Microbiology. 9 (5): 923–9. doi:10.1111/j.1365-2958.1993.tb01222.x. PMID 7934920. S2CID 20663917.
- Gomes, NC; Kosheleva, IA; Abraham, WR; Smalla, K (2005). "Effects of the inoculant strain Pseudomonas putida KT2442 (pNF142) and of naphthalene contamination on the soil bacterial community". FEMS Microbiology Ecology. 54 (1): 21–33. doi:10.1016/j.femsec.2005.02.005. PMID 16329969.
- Britt, Robert Roy (March 7, 2006). "Immortal Polystyrene Foam Meets its Enemy". livescience.com.
- Ward, PG; Goff, M; Donner, M; Kaminsky, W; O'Connor, KE (2006). "A two step chemo-biotechnological conversion of polystyrene to a biodegradable thermoplastic". Environmental Science & Technology. 40 (7): 2433–7. Bibcode:2006EnST...40.2433W. doi:10.1021/es0517668. PMID 16649270.
- Amer, GA; Utkhede, RS (2000). "Development of formulations of biological agents for management of root rot of lettuce and cucumber". Canadian Journal of Microbiology. 46 (9): 809–16. doi:10.1139/w00-063. PMID 11006841.
- Validov, S; Kamilova, F; Qi, S; Stephan, D; Wang, JJ; Makarova, N; Lugtenberg, B (2007). "Selection of bacteria able to control Fusarium oxysporum f. Sp. Radicis-lycopersici in stonewool substrate". Journal of Applied Microbiology. 102 (2): 461–71. doi:10.1111/j.1365-2672.2006.03083.x. PMID 17241352. S2CID 3098008.
- Cornelis, Pierre, ed. (2008). Pseudomonas: Genomics and Molecular Biology (1st ed.). Caister Academic Press. ISBN 978-1-904455-19-6.
- "Industrial biotechnology of Pseudomonas putida and related species. - ResearchGate". Archived from the original on 2014-10-24.
- Harmon, Katherine. "Newly Discovered Bacteria Lives on Caffeine". Scientific American Blog Network.
- Summers, RM; Louie, TM; Yu, CL; Subramanian, M (2011). "Characterization of a broad-specificity non-haem iron N-demethylase from Pseudomonas putida CBB5 capable of utilizing several purine alkaloids as sole carbon and nitrogen source". Microbiology. 157 (Pt 2): 583–92. doi:10.1099/mic.0.043612-0. PMID 20966097.
External links
- Risk Assessment Summary, CEPA 1999. Pseudomonas putida CR30RNSLL(pADPTel).
- Pseudomonas putida is an example for plant growth promoting Rhizobacterium, which produces iron chelating substances.
- Type strain of Pseudomonas putida at BacDive - the Bacterial Diversity Metadatabase