Streptomyces albidoflavus
Streptomyces albidoflavus is a bacterium species from the genus of Streptomyces which has been isolated from soil from Poland.[1][3][4][5] Streptomyces albidoflavus produces dibutyl phthalate and streptothricins.[6][7]
Streptomyces albidoflavus | |
---|---|
Scientific classification | |
Domain: | Bacteria |
Phylum: | Actinomycetota |
Class: | Actinomycetia |
Order: | Streptomycetales |
Family: | Streptomycetaceae |
Genus: | Streptomyces |
Species: | S. albidoflavus |
Binomial name | |
Streptomyces albidoflavus (Rossi Doria 1891) Waksman and Henrici 1948 (Approved Lists 1980)[1] | |
Type strain | |
AS 4.1291, ATCC 25422, BCRC 13699, CBS 416.34, CBS 920.69, CCRC 13699, CGMCC 4.1291, CIP 105122, DSM 40455, ETH 10209, ICMP 12537, ICSSB 1006, IFO 13010, IMRU 850, IMSNU 20133, IMSNU 21006, ISP 5455, JCM 4446, KCC S-0446, KCC S-0466, KCC S-1072, KCCS-0466, KCTC 9202, Lanoot R-8660, LMG 19300, MTCC 932, NBIMCC 2386, NBRC 13010, NCIB 10043, NCIMB 10043, NRRL B-1271, NRRL B-2663, NRRL B-B-2663, NRRL-ISP 5455, RIA 1202, strain ATCC 25422, VKM Ac-746, VTT E-991429[2] | |
Synonyms[3][4] | |
|
Small noncoding RNA
Bacterial small RNAs are involved in post-transcriptional regulation. Using deep sequencing S. albidoflavus transcriptome was analysed at the end of exponential growth. 63 small RNAs were identified. Expression of 11 of them was confirmed by Northern blot. The sRNAs were shown to be only present in Streptomyces species.[8]
sRNA scr4677 (Streptomyces coelicolor sRNA 4677) is located in the intergenic region between anti-sigma factor SCO4677 gene and a putative regulatory protein gene SCO4676. scr4677 expression requires the SCO4677 activity and scr4677 sRNA itself seem to affect the levels of the SCO4676-associated transcripts.[9]
Targets of two of S. albidoflavus noncoding RNAs have been identified. Noncoding RNA of Glutamine Synthetase I was shown to modulate antibiotic production.[10] The small RNA scr5239 (Streptomyces coelicolor sRNA upstream of SCO5239) has two targets. It inhibits agarase DagA expression by direct base pairing to the dagA coding region, and it represses translation of methionine synthase metE (SCO0985) at the 5' end of its open reading frame.[11][12]
Fatty acid synthesis
A crystal structure is available of the S. albidoflavus [acyl-carrier-protein] S-malonyltransferase. S. albidoflavus's ACP S-MT is involved in both fatty acid synthesis II and polyketide synthase and is structurally similar to Escherichia coli's analogue.[13]
Usage in biotechnology
Strains of S. albidoflavus produce various antibiotics, including actinorhodin, methylenomycin, undecylprodigiosin,[14] and perimycin.[15][16] Certain strains of S. albidoflavus can be used for heterologous protein expression.[17]
DNA repair
The Ku homolog is SCF55.25c. It contains an Shrimp alkaline phosphatase-like (SAP-like) domain at the C-terminus. S. albidoflavus produces a (putatively) single-domain protein SC9H11.09c which is homologous to the LigD NucDom which is common to many bacterial LigDs. (LigDs are a subfamily of DNA ligases. In bacteria many, but not all LigDs have additional nuclease domains branched from the universally present central ligase domain. If present - as in this case - the nuclease domain is an N-terminus extension.)[18]
Genetics
The genome consists of a single linear molecule, and although Ku would be expected to perform end maintenance, none has been observed so far.[18]
See also
References
- LPSN bacterio.net
- Straininfo of Streptomyces albidoflavus
- UniProt
- Deutsche Sammlung von Mikroorganismen und Zellkulturen
- Swiontek Brzezinska, M.; Jankiewicz, U.; Burkowska, A. (2013). "Purification and characterization of Streptomyces albidoflavus antifungal components". Applied Biochemistry and Microbiology. 49 (5): 451. doi:10.1134/S0003683813050025. S2CID 17097515.
- Roy, R.N.; Laskar, S.; Sen, S.K. (2006). "Dibutyl phthalate, the bioactive compound produced by Streptomyces albidoflavus 321.2". Microbiological Research. 161 (2): 121–6. doi:10.1016/j.micres.2005.06.007. PMID 16427514.
- Stuart Shapiro (1989). Regulation of Secondary Metabolism in Actinomycetes. CRC Press. ISBN 0-8493-6927-4.
- Vockenhuber MP, Sharma CM, Statt MG, Schmidt D, Xu Z, Dietrich S, et al. (May 2011). "Deep sequencing-based identification of small non-coding RNAs in Streptomyces coelicolor". RNA Biology. 8 (3): 468–77. doi:10.4161/rna.8.3.14421. PMC 3218513. PMID 21521948.
- Moody MJ, Jones SE, Elliot MA (2014-01-01). "Complex intra-operonic dynamics mediated by a small RNA in Streptomyces coelicolor". PLOS ONE. 9 (1): e85856. Bibcode:2014PLoSO...985856H. doi:10.1371/journal.pone.0085856. PMC 3896431. PMID 24465751.
- D'Alia D, Nieselt K, Steigele S, Müller J, Verburg I, Takano E (February 2010). "Noncoding RNA of glutamine synthetase I modulates antibiotic production in Streptomyces coelicolor A3(2)". Journal of Bacteriology. 192 (4): 1160–4. doi:10.1128/JB.01374-09. PMC 2812974. PMID 19966003.
- Vockenhuber MP, Suess B (February 2012). "Streptomyces coelicolor sRNA scr5239 inhibits agarase expression by direct base pairing to the dagA coding region". Microbiology. 158 (Pt 2): 424–435. doi:10.1099/mic.0.054205-0. PMID 22075028.
- Vockenhuber MP, Heueis N, Suess B (2015-01-01). "Identification of metE as a second target of the sRNA scr5239 in Streptomyces coelicolor". PLOS ONE. 10 (3): e0120147. Bibcode:2015PLoSO..1020147V. doi:10.1371/journal.pone.0120147. PMC 4365011. PMID 25785836.
- White, Stephen W.; Zheng, Jie; Zhang, Yong-Mei; Rock, Charles O. (2005). "The Structural Biology of Type II Fatty Acid Biosynthesis". Annual Review of Biochemistry. Annual Reviews. 74 (1): 791–831. doi:10.1146/annurev.biochem.74.082803.133524. ISSN 0066-4154. PMID 15952903.
- Brian P, Riggle PJ, Santos RA, Champness WC (June 1996). "Global negative regulation of Streptomyces coelicolor antibiotic synthesis mediated by an absA-encoded putative signal transduction system". Journal of Bacteriology. 178 (11): 3221–31. doi:10.1128/jb.178.11.3221-3231.1996. PMC 178074. PMID 8655502.
- Liu CM, McDaniel LE, Schaffner CP (March 1972). "Fungimycin, biogenesis of its aromatic moiety". The Journal of Antibiotics. 25 (3): 187–8. doi:10.7164/antibiotics.25.187. PMID 5034814.
- Lee CH, Schaffner CP (May 1969). "Perimycin. The structure of some degradation products". Tetrahedron. 25 (10): 2229–32. doi:10.1016/S0040-4020(01)82770-8. PMID 5788396.
- "Streptomyces coelicolor". John Innes Center. Archived from the original on 19 October 2005. Retrieved 25 January 2010.
- Pitcher, Robert S.; Brissett, Nigel C.; Doherty, Aidan J. (2007). "Nonhomologous End-Joining in Bacteria: A Microbial Perspective". Annual Review of Microbiology. Annual Reviews. 61 (1): 259–282. doi:10.1146/annurev.micro.61.080706.093354. ISSN 0066-4227. PMID 17506672.
Further reading
- Augustine, S. K.; Bhavsar, S. P.; Kapadnis, B. P. (2005). "A non-polyene antifungal antibiotic from Streptomyces albidoflavus PU 23". Journal of Biosciences. 30 (2): 201–11. doi:10.1007/bf02703700. PMID 15886456. S2CID 9722766.
- Hain, T; Ward-Rainey, N; Kroppenstedt, R. M.; Stackebrandt, E; Rainey, F. A. (1997). "Discrimination of Streptomyces albidoflavus strains based on the size and number of 16S-23S ribosomal DNA intergenic spacers". International Journal of Systematic Bacteriology. 47 (1): 202–6. doi:10.1099/00207713-47-1-202. PMID 8995823.
- Cheng, Kun; Rong, Xiaoying; Pinto-Tomás, Adrián A.; Fernández-Villalobos, Marcela; Murillo-Cruz, Catalina; Huang, Ying (2015). "Population Genetic Analysis of Streptomyces albidoflavus Reveals Habitat Barriers to Homologous Recombination in the Diversification of Streptomycetes". Applied and Environmental Microbiology. 81 (3): 966–75. doi:10.1128/AEM.02925-14. PMC 4292468. PMID 25416769.
- Skinner, F. A. (1953). "Inhibition of Fusarium culmorum by Streptomyces albidoflavus". Nature. 172 (4391): 1191. Bibcode:1953Natur.172.1191S. doi:10.1038/1721191a0. PMID 13111286. S2CID 4195458.
- Q. Ashton Acton (2013). Advances in Streptomycetaceae Research and Application: 2013 Edition: ScholarlyBrief. ScholarlyEditions. ISBN 978-1-4816-7198-9.
External links