Indian Space Research Organisation

The Indian Space Research Organisation[lower-alpha 1] (ISRO; /ˈɪsr/) is the national space agency of India, headquartered in Bangalore. It operates under the Department of Space (DOS) which is directly overseen by the Prime Minister of India, while the Chairman of ISRO acts as the executive of DOS as well. ISRO is India's primary agency for performing tasks related to space-based applications, space exploration and the development of related technologies.[6] It is one of six government space agencies in the world which possess full launch capabilities, deploy cryogenic engines, launch extraterrestrial missions and operate large fleets of artificial satellites.[7][8][lower-alpha 2]

Indian Space Research Organisation
ISRO logo (adopted in 2002)[1][2]
Agency overview
AbbreviationISRO
Formed15 August 1969 (1969-08-15)
Preceding agency
  • Indian National Committee for Space Research
    (INCOSPAR)
TypeSpace agency
JurisdictionGovernment of India
HeadquartersBangalore, India
12°57′56″N 77°41′53″E
Chairman
S Somanath[3]
Primary spaceports
Owner India
Employees16,786 as of 2022[4]
Annual budget 13,700 crore (US$1.7 billion) (2022–23) [5]
Websitewww.isro.gov.in

The Indian National Committee for Space Research (INCOSPAR) was established by Jawaharlal Nehru under the Department of Atomic Energy (DAE) in 1962, on the urging of scientist Vikram Sarabhai, recognising the need in space research. INCOSPAR grew and became ISRO in 1969, within DAE.[9] In 1972, the government of India set up a Space Commission and DOS, bringing ISRO under it. The establishment of ISRO thus institutionalised space research activities in India.[10][11] It since then has been managed by DOS, which governs various other institutions in India in the domain of astronomy and space technology.[12]

ISRO built India's first satellite, Aryabhata, which was launched by the Soviet Union in 1975.[13] In 1980, ISRO launched satellite RS-1 onboard its own SLV-3, making India the seventh country to be capable of undertaking orbital launches. SLV-3 was followed by ASLV, which was subsequently succeeded by development of many medium-lift launch vehicles, rocket engines, satellite systems and networks enabling the agency to launch hundreds of domestic and foreign satellites and various deep space missions for space exploration.

ISRO has the world's largest constellation of remote-sensing satellites and operates the GAGAN and NAVIC satellite navigation systems. It has sent two missions to the Moon and one to Mars.

Goals in near future include expanding satellites fleet, landing a rover on Moon, sending humans into space, development of a semi-cryogenic engine, sending more unmanned missions to the Moon, Mars, Venus and Sun and deployment of more space telescopes in orbit to observe cosmic phenomena and outerspace beyond the Solar System. Long-term plans include development of reusable launchers, heavy and super heavy launch vehicles, deploying a space station, sending exploration missions to external planets like Jupiter, Uranus, Neptune and asteroids and manned missions to moons and planets.

ISRO's programs have played a significant role in the socio-economic development of India and have supported both civilian and military domains in various aspects including disaster management, telemedicine and navigation and reconnaissance missions. ISRO's spin off technologies also have founded many crucial innovations for India's engineering and medical industries.

History

Formative years

An Arcas rocket being loaded into launch tube at Thumba Launching Station. In the early days of ISRO, rocket parts were often transported on bicycles and bullock carts.[14]

Modern space research in India can be traced to the 1920s, when scientist S. K. Mitra conducted a series of experiments sounding of the ionosphere through ground-based radio in Kolkata.[15] Later, Indian scientists like C.V. Raman and Meghnad Saha contributed to scientific principles applicable in space sciences.[15] After 1945, important developments were made in coordinated space research in India[15] by two scientists: Vikram Sarabhai—founder of the Physical Research Laboratory at Ahmedabad—and Homi Bhabha, who established the Tata Institute of Fundamental Research in 1945.[15] Initial experiments in space sciences included the study of cosmic radiation, high altitude and airborne testing, deep underground experimentation at the Kolar mines—one of the deepest mining sites in the world—and studies of the upper atmosphere.[16] These studies were done at research laboratories, universities, and independent locations.[16][17]

In 1950, the Department of Atomic Energy (DAE) was founded with Bhabha as its secretary.[17] It provided funding for space research throughout India.[18] During this time, tests continued on aspects of meteorology and the Earth's magnetic field, a topic that had been studied in India since the establishment of the Colaba Observatory in 1823. In 1954, the Aryabhatta Research Institute of Observational Sciences (ARIES) was established in the foothills of the Himalayas.[17] The Rangpur Observatory was set up in 1957 at Osmania University, Hyderabad. Space research was further encouraged by the government of India.[18] In 1957, the Soviet Union launched Sputnik 1 and opened up possibilities for the rest of the world to conduct a space launch.[18]

The Indian National Committee for Space Research (INCOSPAR) was set up in 1962 by Prime Minister Jawaharlal Nehru on the urging of Vikram Sarabhai.[11] There was no dedicated ministry for the space program initially and all activities of INCOSPAR relating to space technology continued to function within DAE.[9][10] H.G.S. Murthy was appointed the first director of the Thumba Equatorial Rocket Launching Station,[19] where sounding rockets were fired, marking the start of upper atmospheric research in India.[20] An indigenous series of sounding rockets named Rohini was subsequently developed and started undergoing launches from 1967 onwards.[21]

1970s and 1980s

Under the government of Indira Gandhi, INCOSPAR was superseded by ISRO. Later in 1972, a space commission and Department of Space (DOS) were set up to oversee space technology development in India specifically and ISRO was brought under DOS, institutionalising space research in India and forging the Indian space program into its existing form.[10][12] India joined the Soviet Interkosmos program for space cooperation[22] and got its first satellite Aryabhatta in orbit through a Soviet rocket.[13]

Efforts to develop an orbital launch vehicle began after mastering sounding rocket technology. The concept was to develop a launcher capable of providing sufficient velocity for a mass of 35 kg (77 lb) to enter low Earth orbit. It took 7 years for ISRO to develop Satellite Launch Vehicle capable of putting 40 kg (88 lb) into a 400-kilometre (250 mi) orbit. An SLV Launch Pad, ground stations, tracking networks, radars and other communications were set up for a launch campaign. The SLV's first launch in 1979 carried a Rohini technology payload but could not inject the satellite into its desired orbit. It was followed by a successful launch in 1980 carrying a Rohini Series-I satellite, making India the seventh country to reach Earth's orbit after the USSR, the US, France, the UK, China and Japan. RS-1 was the third Indian satellite to reach orbit as Bhaskara had been launched from the USSR in 1979. Efforts to develop a medium-lift launch vehicle capable of putting 600-kilogram (1,300 lb) class spacecrafts into 1,000-kilometre (620 mi) Sun-synchronous orbit had already begun in 1978.[23] They would later lead to the development of PSLV.[24] The SLV-3 later had two more launches before discontinuation in 1983.[25] ISRO's Liquid Propulsion Systems Centre (LPSC) was set up in 1985 and started working on a more powerful engine, Vikas, based upon the French Viking.[26] Two years later, facilities to test liquid fueled rocket engines were established and development and testing of various rocket engines thrusters began.[27]

At the same time, another solid fueled rocket Augmented Satellite Launch Vehicle based upon SLV-3 was being developed, and technologies to launch satellites into geostationary orbit (GTO). ASLV had limited success and multiple launch failures; it was soon discontinued.[28] Alongside, technologies for the Indian National Satellite System of communication satellites[29] and the Indian Remote Sensing Programme for earth observation satellites[30] were developed and launches from overseas initiated. The number of satellites eventually grew and the systems were established as among the largest satellite constellations in the world, with multi-band communication, radar imaging, optical imaging and meteorological satellites.[31]

1990s and early 21st century

The arrival of PSLV in 1990s became a major boost for the Indian space program. With the exception of its first flight in 1994 and two partial failures later, PSLV had a streak of more than 50 successful flights. PSLV enabled India to launch all of its low Earth orbit satellites, small payloads to GTO and hundreds of foreign satellites.[32] Along with the PSLV flights, development of a new rocket, a Geosynchronous Satellite Launch Vehicle (GSLV) was going on. India tried to obtain upper-stage cryogenic engines from Russia's Glavkosmos but was blocked by the US from doing so. As a result, KVD-1 engines were imported from Russia under a new agreement which had limited success[33] and a project to develop indigenous cryogenic technology was launched in 1994, taking two decades to reach fulfillment.[34] A new agreement was signed with Russia for seven KVD-1 cryogenic stages and a ground mock-up stage with no technology transfer, instead of five cryogenic stages along with the technology and design in the earlier agreement.[35] These engines were used for the initial flights and were named GSLV Mk.1.[36] ISRO was under US government sanctions between 6 May 1992 to 6 May 1994.[37] After the United States refused to help India with Global Positioning System (GPS) technology during the Kargil war, ISRO was prompted to develop its own satellite navigation system IRNSS which it is now expanding further.[38]

In 2003, when China sent humans into space, Prime Minister Atal Bihari Vajpayee urged scientists to develop technologies to land humans on the Moon[39] and programs for lunar, planetary and crewed missions were started. ISRO launched Chandrayaan-1 in 2008, purportedly the first probe to verify the presence of water on the Moon[40] and the Mars Orbiter Mission in 2013, the first Asian spacecraft to enter Martian orbit; India was the first country to succeed at that on its first attempt.[41] Subsequently, the cryogenic upper stage for GSLV rocket became operational, making India the sixth country to have full launch capabilities.[7] A new heavier-lift launcher GSLV Mk III was introduced in 2014 for heavier satellites and future human space missions.[42]

ISRO did not have an official logo until 2002. The one adopted consists of an orange arrow shooting upwards attached with two blue coloured satellite panels with the name of ISRO written in two sets of text, orange-coloured Devanagari on the left and blue-coloured English in the Prakrta typeface on the right.[1][2]

Goals and objectives

Vikram Sarabhai, first chairperson of INCOSPAR, ISRO's predecessor organization

ISRO is the national space agency of India for the purpose of all space-based applications like reconnaissance, communications and doing research. It undertakes the design and development of space rockets, satellites, explores upper atmosphere and deep space exploration missions. ISRO also has incubated its technologies in India's private space sector, boosting its growth.[6][43] Sarabhai said in 1969:[44][45][46]

There are some who question the relevance of space activities in a developing nation. To us, there is no ambiguity of purpose. We do not have the fantasy of competing with the economically advanced nations in the exploration of the Moon or the planets or manned space-flight. But we are convinced that if we are to play a meaningful role nationally, and in the community of nations, we must be second to none in the application of advanced technologies to the real problems of man and society, which we find in our country. And we should note that the application of sophisticated technologies and methods of analysis to our problems is not to be confused with embarking on grandiose schemes, whose primary impact is for show rather than for progress measured in hard economic and social terms.

The former president of India, A. P. J. Abdul Kalam, said:[47]

Very many individuals with myopic vision questioned the relevance of space activities in a newly independent nation which was finding it difficult to feed its population. But neither Prime Minister Nehru nor Prof. Sarabhai had any ambiguity of purpose. Their vision was very clear: if Indians were to play a meaningful role in the community of nations, they must be second to none in the application of advanced technologies to their real-life problems. They had no intention of using it merely as a means of displaying our might.

India's economic progress has made its space programme more visible and active as the country aims for greater self-reliance in space technology.[48] In 2008, India launched as many as 11 satellites, including nine from other countries, and went on to become the first nation to launch 10 satellites on one rocket.[48] ISRO has put into operation two major satellite systems: the Indian National Satellite System (INSAT) for communication services, and the Indian Remote Sensing Programme (IRS) satellites for management of natural resources.[49][50]

Organisation structure and facilities

The organisational structure of the Indian Department of Space

ISRO is managed by the DOS, which itself falls under the authority of the Space Commission and manages the following agencies and institutes:[51][52][53]

  • Indian Space Research Organisation
  • Antrix Corporation – The marketing arm of ISRO, Bengaluru
  • Physical Research Laboratory (PRL), Ahmedabad
  • National Atmospheric Research Laboratory (NARL), Gadanki, Andhra Pradesh
  • NewSpace India Limited – Commercial wing, Bengaluru
  • North-Eastern Space Applications Centre[54] (NE-SAC), Umiam
  • Indian Institute of Space Science and Technology (IIST), Thiruvananthapuram – India's space university

Research facilities

FacilityLocationDescription
Vikram Sarabhai Space CentreThiruvananthapuramThe largest ISRO base is also the main technical centre and the venue for development of the SLV-3, ASLV, and PSLV series.[55] The base supports TERLS and the Rohini Sounding Rocket programme.[55] It is also developing the GSLV series.[55]
Liquid Propulsion Systems CentreThiruvananthapuram and BengaluruThe LPSC handles design, development, testing and implementation of liquid propulsion control packages, liquid stages and liquid engines for launch vehicles and satellites.[55] The testing of these systems is largely conducted at IPRC at Mahendragiri.[55] The LPSC, Bangalore also produces precision transducers.[56]
Physical Research LaboratoryAhmedabadSolar planetary physics, infrared astronomy, geo-cosmo physics, plasma physics, astrophysics, archaeology, and hydrology are some of the branches of study at this institute.;[55] it also operates the observatory at Udaipur.[55]
National Atmospheric Research LaboratoryTirupatiThe NARL carries out fundamental and applied research in atmospheric and space sciences.[57]
Space Applications CentreAhmedabadThe SAC deals with the various aspects of the practical use of space technology.[55] Among the fields of research at the SAC are geodesy, satellite based telecommunications, surveying, remote sensing, meteorology, environment monitoring etc.[55] The SAC also operates the Delhi Earth Station, which is located in Delhi and is used for demonstration of various SATCOM experiments in addition to normal SATCOM operations.[58]
North-Eastern Space Applications CentreShillongProviding developmental support to North East by undertaking specific application projects using remote sensing, GIS, satellite communication and conducting space science research.[59]

Test facilities

FacilityLocationDescription
ISRO Propulsion ComplexMahendragiriFormerly called LPSC-Mahendragiri, was declared a separate centre. It handles testing and assembly of liquid propulsion control packages, liquid engines, and stages for launch vehicles and satellites.[55]

Construction and launch facilities

FacilityLocationDescription
U R Rao Satellite CentreBengaluruThe venue of eight successful spacecraft projects is also one of the main satellite technology bases of ISRO. The facility serves as a venue for implementing indigenous spacecraft in India.[55] The satellites Aaryabhata, Bhaskara, APPLE, and IRS-1A were built at this site, and the IRS and INSAT satellite series are presently under development here. This centre was formerly known as ISRO Satellite Centre.[56]
Laboratory for Electro-Optics SystemsBengaluruThe Unit of ISRO responsible for the development of altitude sensors for all satellites. The high precision optics for all cameras and payloads in all ISRO satellites are developed at this laboratory, located at Peenya Industrial Estate, Bangalore.
Satish Dhawan Space CentreSriharikotaWith multiple sub-sites the Sriharikota island facility acts as a launching site for India's satellites.[55] The Sriharikota facility is also the main launch base for India's sounding rockets.[56] The centre is also home to India's largest Solid Propellant Space Booster Plant (SPROB) and houses the Static Test and Evaluation Complex (STEX).[56] The Second Vehicle Assembly Building (SVAB) at Sriharikota is being realised as an additional integration facility, with suitable interfacing to a second launch pad.[60][61]
Thumba Equatorial Rocket Launching StationThiruvananthapuramTERLS is used to launch sounding rockets.[62]

Tracking and control facilities

FacilityLocationDescription
Indian Deep Space Network (IDSN)BengaluruThis network receives, processes, archives and distributes the spacecraft health data and payload data in real-time. It can track and monitor satellites up to very large distances, even beyond the Moon.[63]
National Remote Sensing CentreHyderabadThe NRSC applies remote sensing to manage natural resources and study aerial surveying.[55] With centres at Balanagar and Shadnagar it also has training facilities at Dehradun acting as the Indian Institute of Remote Sensing.[55]
ISRO Telemetry, Tracking and Command NetworkBengaluru (headquarters) and a number of ground stations throughout India and the world.[58]Software development, ground operations, Tracking Telemetry and Command (TTC), and support is provided by this institution.[55] ISTRAC has Tracking stations throughout the country and all over the world in Port Louis (Mauritius), Bearslake (Russia), Biak (Indonesia) and Brunei.[64]
Master Control FacilityBhopal; HassanGeostationary satellite orbit raising, payload testing, and in-orbit operations are performed at this facility.[65] The MCF has Earth stations and the Satellite Control Centre (SCC) for controlling satellites.[65] A second MCF-like facility named 'MCF-B' is being constructed at Bhopal.[65]
Space Situational Awareness Control Centre Peenya, Bengaluru A network of telescopes and radars are being set up under the Directorate of Space Situational Awareness and Management to monitor space debris and to safeguard space-based assets. The new facility will end ISRO's dependence on Norad. The sophisticated multi-object tracking radar installed in Nellore, a radar in NE India and telescopes in Thiruvananthapuram, Mount Abu and North India will be part of this network.[66][67]

Human resource development

FacilityLocationDescription
Indian Institute of Remote Sensing (IIRS)DehradunThe Indian Institute of Remote Sensing (IIRS) is a premier training and educational institute set up for developing trained professionals (P.G. and PhD level) in the field of remote sensing, geoinformatics and GPS technology for natural resources, environmental and disaster management. IIRS is also executing many R&D projects on remote sensing and GIS for societal applications. IIRS also runs various outreach programs (Live & Interactive and e-learning) to build trained skilled human resources in the field of remote sensing and geospatial technologies.[68]
Indian Institute of Space Science and Technology (IIST)ThiruvananthapuramThe institute offers undergraduate and graduate courses in Aerospace Engineering, Electronics and Communication Engineering (Avionics), and Engineering Physics. The students of the first three batches of IIST were inducted into different ISRO centres.[69]
Development and Educational Communication UnitAhmedabadThe centre works for education, research, and training, mainly in conjunction with the INSAT programme.[55] The main activities carried out at DECU include GRAMSAT and EDUSAT projects.[56] The Training and Development Communication Channel (TDCC) also falls under the operational control of the DECU.[58]
Space Technology Incubation Centres (S-TICs) at:
  • Dr. B. R. Ambedkar National Institute of Technology Jalandhar
  • Maulana Azad National Institute of Technology
  • National Institute of Technology Agartala
  • National Institute of Technology, Rourkela[70]
  • Visvesvaraya National Institute of Technology[71]
Agartala, Bhopal, Jalandhar, Nagpur Rourkela, Tiruchirappalli The S-TICs opened at premier technical universities in India to promote startups to build applications and products in tandem with the industry and would be used for future space missions. The S-TIC will bring the industry, academia and ISRO under one umbrella to contribute towards research and development (R&D) initiatives relevant to the Indian Space Programme.[72]
Space Innovation Centre at:
  • Veer Surendra Sai University of Technology
Burla, Sambalpur In line with its ongoing effort to promote R&D in space technology through industry as well as academia, ISRO in collaboration with Veer Surendra Sai University of Technology (VSSUT), Burla, Sambalpur, Odisha, has set up Veer Surendra Sai Space Innovation Centre (VSSSIC) within its campus at Sambalpur. The objective of its Space Innovation Research Lab is to promote and encourage the students in research and development in the area of space science and technology at VSSUT and other institutes within this region.[73][74]
Regional Academy Centre for Space (RAC-S) at:
  • Banaras Hindu University
  • Gauhati University
  • Kurukshetra University
  • Malaviya National Institute of Technology
  • National Institute of Technology Karnataka
  • National Institute of Technology Patna
  • Indian Institute of Technology (BHU) Varanasi[75]


Varanasi, Guwahati, Kurukshetra, Jaipur, Mangaluru, Patna All these centres are set up in tier-2 cities to create awareness, strengthen academic collaboration and act as incubators for space technology, space science and space applications. The activities of RAC-S will maximise the use of research potential, infrastructure, expertise, experience and facilitate capacity building.

Antrix Corporation Limited (Commercial Wing)

Set up as the marketing arm of ISRO, Antrix's job is to promote products, services and technology developed by ISRO.[76][77]

NewSpace India Limited (Commercial Wing)

Set up for marketing spin-off technologies, tech transfers through industry interface and scale up industry participation in the space programmes.[78]

Space Technology Incubation Centre

ISRO has opened Space Technology Incubation Centres (S-TIC) at premier technical universities in India which will incubate startups to build applications and products in tandem with the industry and would be used for future space missions. The S-TIC will bring the industry, academia and ISRO under one umbrella to contribute towards research and development (R&D) initiatives relevant to the Indian Space Programme. S-TICs are at the National Institute of Technology, Agartala serving for east region, National Institute of Technology, Jalandhar for the north region, and the National Institute of Technology, Tiruchirappalli for the south region of India.[72]

Advance Space Research Group

Like NASA funded Jet Propulsion Laboratory (JPL) managed by California Institute of Technology (Caltech), ISRO with Indian Institute of Space Science and Technology (IIST) implemented a joint working framework in 2021 in which an Empowered Overseeing Committee (EOC) under Capacity Building Programme Office (CBPO) of ISRO located in Bengaluru will approve all short, medium and long term space research projects of common interest. In return, an Advance Space Research Group (ASRG) formed at IIST under the guidance of EOC will have full access to ISRO facilities. The primary aim is to transform IIST into a premier space research and engineering institute by 2028–2030 that can lead future space exploration missions of ISRO.[79][80]

Directorate of Space Situational Awareness and Management

To reduce dependency on North America Aerospace Defense Command (NORAD) for space situational awareness and protect the civilian and military assets, ISRO is setting up telescopes and radars in four locations to cover each direction. Leh, Mount Abu and Ponmudi were selected to station the telescopes and radars that will cover North, West and South of Indian territory. The last one will be in Northeast India to cover the entire eastern region. Satish Dhawan Space Centre at Sriharikota already supports Multi-Object Tracking Radar (MOTR).[81] All the telescopes and radars will come under Directorate of Space Situational Awareness and Management (DSSAM) in Bengaluru. It will collect tracking data on inactive satellites and will also perform research on active debris removal, space debris modelling and mitigation.[82]

For early warning, ISRO began a ₹400 crore (4 billion; US$53 million) project called Network for Space Object Tracking and Analysis (NETRA). It will help the country track atmospheric entry, intercontinental ballistic missile (ICBM), anti-satellite weapon and other space-based attacks. All the radars and telescopes will be connected through NETRA. The system will support remote and scheduled operations. NETRA will follow the Inter-Agency Space Debris Coordination Committee (IASDCC) and United Nations Office for Outer Space Affairs (UNOSA) guidelines. The objective of NETRA is to track objects at a distance of 36,000 kilometres (22,000 mi) in GTO.[83][84]

India signed a memorandum of understanding on the Space Situational Awareness Data Sharing Pact with the US in April 2022.[85][86] It will enable Department of Space to collaborate with the Combined Space Operation Center (CSpOC) to protect the space-based assets of both nations from natural and man-made threats.[87] On 11 July 2022, ISRO System for Safe and Sustainable Space Operations Management (IS4OM) at Space Situational Awareness Control Centre, in Peenya was inaugurated by Jitender Singh. It will help provide information on on-orbit collision, fragmentation, atmospheric re-entry risk, space-based strategic information, hazardous asteroids, and space weather forecast. IS4OM will safeguard all the operational space assets, identify and monitor other operational spacecrafts with close approaches which have overpasses over Indian subcontinent and those which conduct intentional manoeuvres with suspicious motives or seek re-entry within South Asia.[88]

Other facilities

  • Balasore Rocket Launching Station (BRLS) – Odisha
  • Bhaskaracharya Institute For Space Applications and Geo-Informatics (BISAG), Gandhinagar
  • Human Space Flight Centre (HSFC), Bengaluru
  • Indian National Committee for Space Research (INCOSPAR)
  • Indian Regional Navigational Satellite System (IRNSS)
  • Indian Space Science Data Centre (ISSDC)
  • Integrated Space Cell
  • Inter University Centre for Astronomy and Astrophysics (IUCAA)
  • ISRO Inertial Systems Unit (IISU) – Thiruvananthapuram
  • Master Control Facility
  • National Deep Space Observation Centre (NDSPO)
  • Regional Remote Sensing Service Centres (RRSSC)

General satellite programmes

INSAT-1B

Since the launch of Aryabhata in 1975,[13] a number of satellite series and constellations have been deployed by Indian and foreign launchers. At present, ISRO operates one of the largest constellations of active communication and earth imaging satellites for military and civilian uses.[31]

The IRS series

The Indian Remote Sensing satellites (IRS) are India's earth observation satellites. They are the largest collection of remote sensing satellites for civilian use in operation today, provideing remote sensing services.[31] All the satellites are placed in polar Sun-synchronous orbit (except GISATs) and provide data in a variety of spatial, spectral and temporal resolutions to enable several programmes to be undertaken relevant to national development. The initial versions are composed of the 1 (A, B, C, D) nomenclature while the later versions were divided into sub-classes named based on their functioning and uses including Oceansat, Cartosat, HySIS, EMISAT and ResourceSat etc. Their names were unified under the prefix "EOS" regardless of functioning in 2020.[89] They support a wide range of applications including optical, radar and electronic reconnaissance for Indian agencies, city planning, oceanography and environmental studies.[31]

The INSAT series

INSAT-1B satellite: The broadcasting sector in India is highly dependent on INSAT system.

The Indian National Satellite System (INSAT) is the country's telecommunication system. It is a series of multipurpose geostationary satellites built and launched by ISRO to satisfy the telecommunications, broadcasting, meteorology and search-and-rescue needs. Since the introduction of the first one in 1983, INSAT has become the largest domestic communication system in the Asia-Pacific Region. It is a joint venture of DOS, the Department of Telecommunications, India Meteorological Department, All India Radio and Doordarshan. The overall coordination and management of INSAT system rests with the Secretary-level INSAT Coordination Committee.[90] The nomenclature of the series was changed to "GSAT" from "INSAT", then further changed to "CMS" from 2020 onwards.[91] These satellites have been used by the Indian Armed Forces as well.[92][93] GSAT-9 or "SAARC Satellite" provides communication services for India's smaller neighbors.[94]

Gagan Satellite Navigation System

The Ministry of Civil Aviation has decided to implement an indigenous Satellite-Based Regional GPS Augmentation System also known as Space-Based Augmentation System (SBAS) as part of the Satellite-Based Communications, Navigation, Surveillance and Air Traffic Management plan for civil aviation. The Indian SBAS system has been given the acronym GAGAN – GPS Aided GEO Augmented Navigation. A national plan for satellite navigation including implementation of a Technology Demonstration System (TDS) over Indian airspace as a proof of concept has been prepared jointly by Airports Authority of India and ISRO. The TDS was completed during 2007 with the installation of eight Indian Reference Stations at different airports linked to the Master Control Centre located near Bangalore.[95]

Coverage of the IRNSS in blue, as of 2020

IRNSS with an operational name NavIC is an independent regional navigation satellite system developed by India. It is designed to provide accurate position information service to users in India as well as the region extending up to 1,500 km (930 mi) from its borders, which is its primary service area. IRNSS provides two types of services, namely, Standard Positioning Service (SPS) and Restricted Service (RS), providing a position accuracy of better than 20 m (66 ft) in the primary service area.[96]

Other satellites

Kalpana-1 (MetSat-1) was ISRO's first dedicated meteorological satellite.[97][98] Indo-French satellite SARAL on 25 February 2013. SARAL (or "Satellite with ARgos and AltiKa") is a cooperative altimetry technology mission, used for monitoring the oceans' surface and sea levels. AltiKa measures ocean surface topography with an accuracy of 8 mm (0.31 in), compared to 2.5 cm (0.98 in) on average using altimeters, and with a spatial resolution of 2 km (1.2 mi).[99][100]

Launch vehicles

Comparison of Indian carrier rockets. Left to right: SLV, ASLV, PSLV, GSLV, GSLV Mark III

During the 1960s and 1970s, India initiated its own launch vehicles owing to geopolitical and economic considerations. In the 1960s–1970s, the country developed a sounding rocket, and by the 1980s, research had yielded the Satellite Launch Vehicle-3 and the more advanced Augmented Satellite Launch Vehicle (ASLV), complete with operational supporting infrastructure.[101]

Satellite Launch Vehicle

Stamp depicting SLV-3 D1 carrying RS-D1 satellite to orbit

The Satellite Launch Vehicle (known as SLV-3) was the first space rocket to be developed by India. The initial launch in 1979 was a failure followed by a successful launch in 1980 making India the sixth country in world with orbital launch capability. The development of bigger rockets began afterwards.[24]

Augmented Satellite Launch Vehicle

Augmented or Advanced Satellite Launch Vehicle (ASLV) was another small launch vehicle realised in 1980s to develop technologies required to place satellites into geostationary orbit. ISRO did not have adequate funds to develop ASLV and PSLV at once. Since ASLV suffered repeated failures, it was dropped in favour of a new project.[102][28]

Polar Satellite Launch Vehicle

PSLV-C11 lifts off carrying Chandrayaan-1, first Indian mission to the moon.

Polar Satellite Launch Vehicle or PSLV is the first medium-lift launch vehicle from India which enabled India to launch all its remote-sensing satellites into Sun-synchronous orbit. PSLV had a failure in its maiden launch in 1993. Besides two other partial failures, PSLV has become the primary workhorse for ISRO with more than 50 launches placing hundreds of Indian and foreign satellites into orbit.[103]

Decade-wise summary of PSLV launches:

Decade Successful Partial success Failure Total
1990s 3 1 1 5
2000s 11 0 0 11
2010s 33 0 1 34
2020s 4 0 0 4
Total 51 1 2 54

Geosynchronous Satellite Launch Vehicle (GSLV)

GSLV-F08 launches GSAT-6A into geostationary transfer orbit (2018).

Geosynchronous Satellite Launch Vehicle was envisaged in 1990s to transfer significant payloads to geostationary orbit. ISRO initially had a great problem realising GSLV as the development of CE-7.5 in India took a decade. The US had blocked India from obtaining cryogenic technology from Russia, leading India to develop its own cryogenic engines.[33]

Decade-wise summary of GSLV Launches:

Decade Successful Partial success Failure Total
2000s 2 2 1 5
2010s 6 0 2 8
2020s 0 0 1 1
Total 8 2 4 14

GSLV Mark III

GSLV Mk III D1 being moved from assembly building to the launch pad

Geosynchronous Satellite Launch Vehicle Mark III (GSLV Mk III), also known as LVM3, is the heaviest rocket in operational service with ISRO. Equipped with a more powerful cryogenic engine and boosters than GSLV, it has significantly higher playload capacity and allows India to launch all its communication satellites.[104] LVM3 is expected to carry India's first crewed mission to space[105] and will be the testbed for SCE-200 engine which will power India's heavy lift rockets in future.[106]

Decade-wise summary of GSLV Mark III launches:

Decade Successful Partial success Failure Total
2010s 4 0 0 4[107]

SSLV

The Small Satellite Launch Vehicle (SSLV) is a small-lift launch vehicle developed by the ISRO with payload capacity to deliver 500 kg (1,100 lb) to low Earth orbit (500 km (310 mi)) or 300 kg (660 lb) to Sun-synchronous orbit (500 km (310 mi))[108] for launching small satellites, with the capability to support multiple orbital drop-offs.[109][110][111]

Decade-wise summary of SSLV launches:

Decade Successful Partial success Failure Total
2020s 0 0 1 1

Human Spaceflight Programme

The first proposal to send humans into space was discussed by ISRO in 2006, leading to work on the required infrastructure and spacecraft.[112][113] The trials for crewed space missions began in 2007 with the 600-kilogram (1,300 lb) Space Capsule Recovery Experiment (SRE), launched using the Polar Satellite Launch Vehicle (PSLV) rocket, and safely returned to earth 12 days later.[114]

In 2009, the Indian Space Research Organisation proposed a budget of 124 billion (equivalent to 260 billion or US$3.3 billion in 2020) for its human spaceflight programme. An uncrewed demonstration flight was expected after seven years from the final approval and a crewed mission was to be launched after seven years of funding.[115] A crewed mission initially was not a priority and left on the backburner for several years.[116] A space capsule recovery experiment in 2014[117][118] and a pad abort test in 2018[119] were followed by Prime Minister Narendra Modi's announcement in his 2018 Independence Day address that India will send astronauts into space by 2022 on the new Gaganyaan spacecraft.[120] To date, ISRO has developed most of the technologies needed, such as the crew module and crew escape system, space food, and life support systems. The project would cost less than 100 billion (US$1.3 billion) and would include sending two or three Indians to space, at an altitude of 300–400 km (190–250 mi), for at least seven days, using a GSLV Mk-III launch vehicle.[121][122]

Astronaut training and other facilities

The newly established Human Space Flight Centre (HSFC) will coordinate the IHSF campaign.[123][124] ISRO will set up an astronaut training centre in Bangalore to prepare personnel for flights in the crewed vehicle. It will use simulation facilities to train the selected astronauts in rescue and recovery operations and survival in microgravity, and will undertake studies of the radiation environment of space. ISRO had to build centrifuges to prepare astronauts for the acceleration phase of the launch. Existing launch facilities at Satish Dhawan Space Centre will have to be upgraded for the Indian human spaceflight campaign.[125] Human Space Flight Centre and Glavcosmos signed an agreement on 1 July 2019 for the selection, support, medical examination and space training of Indian astronauts.[126] An ISRO Technical Liaison Unit (ITLU) was to be set up in Moscow to facilitate the development of some key technologies and establishment of special facilities which are essential to support life in space.[127] Four Indian Air Force personnel finished training at Yuri Gagarin Cosmonaut Training Center in March 2021.[128]

Crewed spacecraft

ISRO is working towards an orbital crewed spacecraft that can operate for seven days in low Earth orbit. The spacecraft, called Gaganyaan, will be the basis of the Indian Human Spaceflight Programme. The spacecraft is being developed to carry up to three people, and a planned upgraded version will be equipped with a rendezvous and docking capability. In its first crewed mission, ISRO's largely autonomous 3-tonne (3.3-short-ton; 3.0-long-ton) spacecraft will orbit the Earth at 400 km (250 mi) altitude for up to seven days with a two-person crew on board. As of February 2021, the crewed mission is planned to be launched on ISRO's GSLV Mk III in 2023.[129]

Space station

India plans to build a space station as a follow-up programme to Gaganyaan. ISRO chairman K. Sivan has said that India will not join the International Space Station programme and will instead build a 20-tonne (22-short-ton; 20-long-ton) space station on its own.[130][131] It is expected to be placed in a low Earth orbit at 400 kilometres (250 mi) altitude and be capable of harbouring three humans for 1520 days. The rough time-frame is five to seven years after completion of the Gaganyaan project.[132][133]

Planetary sciences and astronomy

ISRO and Tata Institute of Fundamental Research have operated a balloon launch base at Hyderabad since 1967.[134] Its proximity to the geo-magnetic equator,[135] where both primary and secondary cosmic ray fluxes are low, makes it an ideal location to study diffuse cosmic X-ray background.[134]

ISRO played a role in the discovery of three species of bacteria in the upper stratosphere at an altitude between 20–40 km (12–25 mi). The bacteria, highly resistant to ultra-violet radiation, are not found elsewhere on Earth, leading to speculation on whether they are extraterrestrial in origin.[136] They are considered extremophiles, and named as Bacillus isronensis in recognition of ISRO's contribution in the balloon experiments, which led to its discovery, Bacillus aryabhata after India's celebrated ancient astronomer Aryabhata and Janibacter hoylei after the distinguished astrophysicist Fred Hoyle.[137]

Astrosat

Astrosat-1 in deployed configuration

Launched in 2015, Astrosat is India's first dedicated multi-wavelength space observatory. Its observation study includes active galactic nuclei, hot white dwarfs, pulsations of pulsars, binary star systems, and supermassive black holes located at the centre of the galaxy.[138]

Extraterrestrial exploration

Lunar exploration

Chandryaan (lit.'Mooncraft') are India's series of lunar exploration spacecraft. The initial mission included an orbiter and controlled impact probe while later missions include landers, rovers and sampling missions.[106][139]

Chandrayaan-1
Rendering of Chandrayaan-1 spacecraft

Chandrayaan-1 was India's first mission to the Moon. The robotic lunar exploration mission included a lunar orbiter and an impactor called the Moon Impact Probe. ISRO launched it using a modified version of the PSLV on 22 October 2008 from Satish Dhawan Space Centre. It entered lunar orbit on 8 November 2008, carrying high-resolution remote sensing equipment for visible, near infrared, and soft and hard X-ray frequencies. During its 312-day operational period (two years were planned), it surveyed the lunar surface to produce a complete map of its chemical characteristics and three-dimensional topography. The polar regions were of special interest, as they had possible ice deposits. Chandrayaan-1 carried 11 instruments: five Indian and six from foreign institutes and space agencies (including NASA, ESA, the Bulgarian Academy of Sciences, Brown University and other European and North American institutions and companies), which were carried for free. The mission team was awarded the American Institute of Aeronautics and Astronautics SPACE 2009 award,[140] the International Lunar Exploration Working Group's International Co-operation award in 2008,[141] and the National Space Society's 2009 Space Pioneer Award in the science and engineering category.[142][143]

Chandrayaan-2
Vikram lander mounted on top of the Chandrayaan-2 orbiter

Chandrayaan-2, the second mission to the Moon, which included an orbiter, a lander and a rover. It was launched on a Geosynchronous Satellite Launch Vehicle Mark III (GSLV-MkIII) on 22 July 2019, consisting of a lunar orbiter, the Vikram lander, and the Pragyan lunar rover, all developed in India.[144][145] It was the first mission meant to explore the little-explored lunar south pole region.[146] The objective of the Chandrayaan-2 mission was to land a robotic rover to conduct various studies on the lunar surface.[147]

The Vikram lander, carrying the Pragyan rover, was scheduled to land on the near side of the Moon, in the south polar region at a latitude of about 70° S at approximately 1:50 am(IST) on 7 September 2019. However, the lander deviated from its intended trajectory starting from an altitude of 2.1 km (1.3 mi), and telemetry was lost seconds before touchdown was expected.[148] A review board concluded that the crash-landing was caused by a software glitch.[149] The lunar orbiter was efficiently positioned in an optimal lunar orbit, extending its expected service time from one year to seven.[150] There will be another attempt to soft-land on the Moon in 2023, without an orbiter.[151]

Mars exploration

Mars Orbiter Mission (MOM) or (Mangalyaan-1)
Artist's rendering of the Mars Orbiter Mission spacecraft, with Mars in the background

The Mars Orbiter Mission (MOM), informally known as Mangalyaan(lit. 'Marscraft'), was launched into Earth orbit on 5 November 2013 by the Indian Space Research Organisation (ISRO) and has entered Mars orbit on 24 September 2014.[152] India thus became the first country to have a space probe enter Mars orbit on its first attempt. It was completed at a record low cost of $74 million.[153]

MOM was placed into Mars orbit on 24 September 2014. The spacecraft had a launch mass of 1,337 kg (2,948 lb), with 15 kg (33 lb) of five scientific instruments as payload.[154][155]

The National Space Society awarded the Mars Orbiter Mission team the 2015 Space Pioneer Award in the science and engineering category.[156][157]

Future projects

ISRO is developing and operationalising more powerful and less pollutive rocket engines so it can eventually develop much heavier rockets. It also plans to develop electric and nuclear propulsion for satellites and spacecrafts to reduce their weight and extend their service lives.[158] Long-term plans may include crewed landings on Moon and other planets as well.[159]

Semi-cryogenic engine

SCE-200 is a rocket-grade kerosene (dubbed "ISROsene") and liquid oxygen (LOX)-based semi-cryogenic rocket engine inspired by RD-120. The engine will be less polluting and far more powerful. When combined with the GSLV Mark III, it will boost its payload capacity; it will be clustered in future to power India's heavy rockets.[160]

Methalox engine

Reusable methane and LOX-based engines are under development. Methane is less pollutive, leaves no residue and hence the engine needs very little refurbishment.[160] The LPSC began cold flow tests of engine prototypes in 2020.[27]

Modular heavy rockets

ISRO is studying heavy (HLV) and super-heavy lift launch vehicles (SHLV). Modular launchers are being designed, with interchangeable parts, to reduce production time. A 10-tonne (11-short-ton; 9.8-long-ton) capacity HLV and an SHLV capable of delivering 50–100 tonnes (55–110 short tons; 49–98 long tons) into orbit have been mentioned in statements and presentations from ISRO officials.[161][162]

The agency intends to develop a launcher in the 2020s which can carry nearly 16 t (18 short tons; 16 long tons) to geostationary transfer orbit, nearly four times the capacity of the existing GSLV Mark III.[160] A rocket family of five medium to heavy-lift class modular rockets described as either "Unified Modular Launch Vehicles" (UMLV) or "Unified Launch Vehicles" (ULV) are being planned which will share parts and will replace ISRO's existing PSLV, GSLV and LVM3 rockets completely. The rocket family will be powered by SCE-200 cryogenic engine and will have a capacity of lifting from 4.9 t (5.4 short tons; 4.8 long tons) to 16 t (18 short tons; 16 long tons) to geostationary transfer orbit.[163]

Reusable launchers

RLV-TD HEX01 from Satish Dhawan Space Centre First Launch Pad (SDSC SHAR) on 23 May 2016.

There have been two reusable launcher projects ongoing at ISRO. One is the ADMIRE test vehicle, conceived as a VTVL system and another is RLV-TD programme, being run to develop a spacecraft similar to the American Space Shuttle which will be launched vertically but land like a plane.[164]

To realise a fully re-usable two-stage-to-orbit (TSTO) launch vehicle, a series of technology demonstration missions have been conceived. For this purpose, the winged Reusable Launch Vehicle Technology Demonstrator (RLV-TD) has been configured. The RLV-TD acts as a flying testbed to evaluate various technologies such as hypersonic flight, autonomous landing, powered cruise flight, and hypersonic flight using air-breathing propulsion. First in the series of demonstration trials was the Hypersonic Flight Experiment (HEX). ISRO launched the prototype's test flight, RLV-TD, from the Sriharikota spaceport in February 2016. It weighs around 1.5 t (1.7 short tons; 1.5 long tons) and flew up to a height of 70 km (43 mi).[165] HEX was completed five months later. A scaled-up version of it could serve as fly-back booster stage for the winged TSTO concept.[166] HEX will be followed by a landing experiment (LEX) and return flight experiment (REX).[167]

Small Satellite Launch Vehicle

The Small Satellite Launch Vehicle (SSLV) is a compact small-lift launch vehicle primarily aimed at the small satellites market. It can be quickly assembled with low power and hence allows more frequent launches. The SSLV can place 500 kg (1,100 lb) in 500 km (310 mi) low Earth orbit and 300 kg (660 lb) in Sun-synchronous orbit.[168]

Spacecraft propulsion and power

Electric thrusters

India has been working on replacing conventional chemical propulsion with Hall-effect and plasma thrusters which would make spacecraft lighter.[160] GSAT-4 was the first Indian spacecraft to carry electric thrusters, but it failed to reach orbit.[169] GSAT-9 launched later in 2017, had xenon-based electric propulsion system for in-orbit functions of the spacecraft. GSAT-20 is expected to be the first fully electric satellite from India.[170][171]

Alpha source thermoelectric propulsion technology

Radioisotope thermoelectric generator (RTG), also called alpha source thermoelectric technology by ISRO, is a type of atomic battery which uses nuclear decay heat from radioactive material to power the spacecraft.[172] In January 2021, the U R Rao Satellite Centre issued an Expression of Interest (EoI) for design and development of a 100-watt RTG. RTGs ensure much longer spacecraft life and have less mass than solar panels on satellites. Development of RTGs will allow ISRO to undertake long-duration deep space missions to the outer planets.[173][174]

Extraterrestrial probes

DestinationCraft nameLaunch vehicleYear
SunAditya-L1PSLV-XL2022
MoonChandrayaan-3GSLV Mk III2023
VenusShukrayaan-1
GSLV Mk II2024
MarsMars Orbiter Mission 2
(Mangalyaan 2)
GSLV Mk III2024
Lunar exploration

Chandryaan-3 is India's planned second attempt to soft-land on the Moon after the failure of Chandrayaan-2. The mission will only include a lander-rover set and will communicate with the orbiter from the previous mission. The technology demonstrated in a successful Moon landing will be used in a joint Indo-Japanese Lunar Polar Exploration Mission for sampling and analysis of lunar soil.[175]

Mars exploration

The next Mars mission, Mars Orbiter Mission 2 or Mangalyaan 2, has been proposed for launch in 2024.[176] The newer spacecraft will be significantly heavier and better equipped than its predecessor;[106] it will only have an orbiter.[177]

Venus exploration

ISRO is considering an orbiter mission to Venus called Shukrayaan-1, that could launch as early as 2023 to study the planet's atmosphere.[178] Some funds for preliminary studies were allocated in the 2017–18 Indian budget under Space Sciences;[179][180][181] solicitations for potential instruments were requested in 2017[182] and 2018. A mission to Venus is scheduled for 2025 that will include a payload instrument called Venus Infrared Atmospheric Gases Linker (VIRAL) which has been co-developed with the Laboratoire atmosphères, milieux, observations spatiales (LATMOS) under French National Centre for Scientific Research (CNRS) and Roscosmos.[183]

Solar probes

In 2022 ISRO plans to launch the 400 kg (880 lb) Aditya-L1, a mission to study the Solar corona.[184][185][186] It is the first Indian space-based solar coronagraph to study the corona in visible and near-infrared bands. Originally planned during the heightened solar activity period in 2012, Aditya-L1 was postponed to 2021 due to the extensive work involved in its manufacture, and other technical aspects. The main objective of the mission is to study coronal mass ejections (CMEs), their properties (the structure and evolution of their magnetic fields for example), and consequently constrain parameters that affect space weather.[187]

Asteroids and outer solar system

Conceptual studies are underway for spacecraft destined for the asteroids and Jupiter, as well, in the long term. The ideal launch window to send a spacecraft to Jupiter occurs every 33 months. If the mission to Jupiter is launched, a flyby of Venus would be required.[188] Development of RTEG power might allow the agency to further undertake deeper space missions to the other outer planets.[173]

Space telescopes and observatories

AstroSat-2

AstroSat-2 is the successor to the Astrosat mission.[189]

XPoSat

The X-ray Polarimeter Satellite (XPoSat) is a planned mission to study polarisation. It is planned to have a mission life of five years and is planned to be launched in 2022.[190][191] The spacecraft is planned to carry the Polarimeter Instrument in X-rays (POLIX) payload which will study the degree and angle of polarisation of bright astronomical X-ray sources in the energy range 5–30 keV.[192]

Exoworlds

Exoworlds is a joint proposal by ISRO, IIST and the University of Cambridge for a space telescope dedicated for atmospheric studies of exoplanets, planned for 2025.[193][194]

Forthcoming satellites

Satellite name Launch vehicle YearPurpose Notes
EOS-6 /Oceansat-3 PSLV – C53 August 2022 Earth observation
NVS-01 GSLV Mk II – F14 2022Navigation
GSAT-20 GSLV Mk III 2022Communications
GISAT 2 GSLV Mk II 2022 Earth observation Geospatial imagery to facilitate continuous observation of Indian sub-continent, quick monitoring of natural hazards and disaster.[195]
IDRSS GSLV Mk II 2022Data relay and satellite tracking constellation Facilitates continuous real-time communication between Low Earth orbit bound spacecraft to the ground station as well as inter-satellite communication. Such a satellite in geostationary orbit can track a low altitude spacecraft up to almost half of its orbit.[196]
NISAR GSLV Mk II January 2023Earth observation NASA-ISRO Synthetic Aperture Radar (NISAR) is a joint project between NASA and ISRO to co-develop and launch a dual frequency synthetic aperture radar satellite to be used for remote sensing. It is notable for being the first dual band radar imaging satellite.[197]
DISHA PSLV 2024–25[198] Aeronomy Disturbed and quite-type Ionosphere System at High Altitude (DISHA) satellite constellation with two satellites in 450 km (280 mi) LEO.[176]
AHySIS-2 PSLV 2024 Earth observation Follow-up to HySIS hyperspectral Earth imaging satellite.[199]

Applications

Telecommunication

India uses its satellite communication network – one of the largest in the world – for applications such as land management, water resources management, natural disaster forecasting, radio networking, weather forecasting, meteorological imaging and computer communication.[200] Business, administrative services, and schemes such as the National Informatics Centre (NIC) are direct beneficiaries of applied satellite technology.[201]

Military

The Integrated Space Cell, under the Integrated Defence Staff headquarters of the Ministry of Defence,[202] has been set up to utilise more effectively the country's space-based assets for military purposes and to look into threats to these assets.[203][204] This command will leverage space technology including satellites. Unlike an aerospace command, where the Air Force controls most of its activities, the Integrated Space Cell envisages cooperation and coordination between the three services as well as civilian agencies dealing with space.[202]

With 14 satellites, including GSAT-7A for exclusive military use and the rest as dual-use satellites, India has the fourth largest number of satellites active in the sky which includes satellites for the exclusive use of its air force (IAF) and navy.[205] GSAT-7A, an advanced military communications satellite built exclusively for the Air Force,[206] is similar to the Navy's GSAT-7, and GSAT-7A will enhance the IAF's network-centric warfare capabilities by interlinking different ground radar stations, ground airbases and airborne early warning and control (AWACS) aircraft such as the Beriev A-50 Phalcon and DRDO AEW&CS.[206][207]

GSAT-7A will also be used by the Army's Aviation Corps for its helicopters and unmanned aerial vehicle (UAV) operations.[206][207] In 2013, ISRO launched GSAT-7 for the exclusive use of the Navy to monitor the Indian Ocean Region (IOR) with the satellite's 2,000-nautical-mile (3,700 km; 2,300 mi) 'footprint' and real-time input capabilities to Indian warships, submarines and maritime aircraft.[205] To boost the network-centric operations of the IAF, ISRO launched GSAT-7A in December 2018.[208][205] The RISAT series of radar-imaging earth observation satellites is also meant for Military use.[209] ISRO launched EMISAT on 1 April 2019. EMISAT is a 436-kilogram (961 lb) electronic intelligence (ELINT) satellite. It will improve the situational awareness of the Indian Armed Forces by providing information and the location of hostile radars.[210]

India's satellites and satellite launch vehicles have had military spin-offs. While India's 150–200-kilometre (93–124 mi) range Prithvi missile is not derived from the Indian space programme, the intermediate range Agni missile is derived from the Indian space programme's SLV-3. In its early years, under Sarabhai and Dhawan, ISRO opposed military applications for its dual-use projects such as the SLV-3. Eventually, the Defence Research and Development Organisation (DRDO)-based missile programme borrowed staff and technology from ISRO. Missile scientist A.P.J. Abdul Kalam (later elected president), who had headed the SLV-3 project at ISRO, took over as missile programme at DRDO. About a dozen scientists accompanied him, helping to design the Agni missile using the SLV-3's solid fuel first stage and a liquid-fuel (Prithvi-missile-derived) second stage. The IRS and INSAT satellites were primarily intended, and used, for civilian-economic applications, but they also offered military spin-offs. In 1996 the Ministry of Defence temporarily blocked the use of IRS-1C by India's environmental and agricultural ministries in order to monitor ballistic missiles near India's borders. In 1997, the Air Force's "Airpower Doctrine" aspired to use space assets for surveillance and battle management.[211]

Academic

Institutions like the Indira Gandhi National Open University and the Indian Institutes of Technology use satellites for educational applications.[212] Between 1975 and 1976, India conducted its largest sociological programme using space technology, reaching 2,400 villages through video programming in local languages aimed at educational development via ATS-6 technology developed by NASA.[213] This experiment—named Satellite Instructional Television Experiment (SITE)—conducted large-scale video broadcasts resulting in significant improvement in rural education.[213] Education could reach remote rural areas with the help of the above programs.

Telemedicine

ISRO has applied its technology for telemedicine, directly connecting patients in rural areas to medical professionals in urban locations via satellite.[212] Since high-quality healthcare is not universally available in some of the remote areas of India, patients in those areas are diagnosed and analysed by doctors in urban centers in real time via video conferencing.[212] The patient is then advised on medicine and treatment,[212] and treated by the staff at one of the 'super-specialty hospitals' per instructions from those doctors.[212] Mobile telemedicine vans are also deployed to visit locations in far-flung areas and provide diagnosis and support to patients.[212]

Biodiversity Information System

ISRO has also helped implement India's Biodiversity Information System, completed in October 2002.[214] Nirupa Sen details the program: "Based on intensive field sampling and mapping using satellite remote sensing and geospatial modeling tools, maps have been made of vegetation cover on a 1: 250,000 scale. This has been put together in a web-enabled database that links gene-level information of plant species with spatial information in a BIOSPEC database of the ecological hot spot regions, namely northeastern India, Western Ghats, Western Himalayas and Andaman and Nicobar Islands. This has been made possible with collaboration between the Department of Biotechnology and ISRO."[214]

Cartography

The Indian IRS-P5 (CARTOSAT-1) was equipped with high-resolution panchromatic equipment to enable it for cartographic purposes.[44] IRS-P5 (CARTOSAT-1) was followed by a more advanced model named IRS-P6 developed also for agricultural applications.[44] The CARTOSAT-2 project, equipped with single panchromatic camera that supported scene-specific on-spot images, succeeded the CARTOSAT-1 project.[215]

Spin-offs

ISRO's research has been diverted into spin-offs to develop various technologies for other sectors. Examples include bionic limbs for people without limbs, silica aerogel to keep Indian soldiers serving in extremely cold areas warm, distress alert transmitters for accidents, Doppler weather radar and various sensors and machines for inspection work in engineering industries.[216][217]

International cooperations

ISRO has signed various formal cooperative arrangements in the form of either Agreements or Memoranda of Understanding (MoU) or Framework Agreements with Afghanistan, Algeria, Argentina, Armenia, Australia, Bahrain, Bangladesh, Bolivia, Brazil, Brunei, Bulgaria, Canada, Chile, China, Egypt, Finland, France, Germany, Hungary, Indonesia, Israel, Italy, Japan, Kazakhstan, Kuwait, Maldives, Mauritius, Mexico, Mongolia, Morocco, Myanmar, Norway, Peru, Portugal, South Korea, Russia, São Tomé and Príncipe, Saudi Arabia, Singapore, South Africa, Spain, Oman, Sweden, Syria, Tajikistan, Thailand, the Netherlands, Tunisia, Ukraine, United Arab Emirates, United Kingdom, United States, Uzbekistan, Venezuela and Vietnam. Formal cooperative instruments have been signed with international multilateral bodies including European Centre for Medium-Range Weather Forecasts (ECMWF), European Commission, European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), European Space Agency (ESA) and South Asian Association for Regional Cooperation (SAARC).[218]

Notable collaborative projects

Chandrayaan-1
  • Chandrayaan-1 also carried scientific payloads to the moon from NASA, ESA, Bulgarian Space Agency, and other institutions/companies in North America and Europe.[219]
Indo-French satellite missions

ISRO has two collaborative satellite missions with France's CNES, namely Megha-Tropiques to study water cycle in the tropical atmosphere[220] and SARAL for altimetry.[221] A third mission consisting of an earth observation satellite with a thermal infrared imager, TRISHNA (Thermal infraRed Imaging Satellite for High resolution Natural resource Assessment) is being planned by the two countries.[222]

LUPEX

Lunar Polar Exploration Mission is a joint Indo-Japanese mission to study the polar surface of the Moon where India is tasked with providing soft landing technologies.[223]

NISAR

NASA-ISRO Synthetic Aperture Radar (NISAR) is a joint Indo-US radar project carrying an L Band and an S Band radar. It will be world's first radar imaging satellite to use dual frequencies.[224]

Some other notable collaborations include:

  • ISRO operates LUT/MCC under the international COSPAS/SARSAT Programme for Search and Rescue.[225]
  • India has established a Centre for Space Science and Technology Education in Asia and the Pacific (CSSTE-AP) that is sponsored by the United Nations.[226]
  • India is a member of the United Nations Committee on the Peaceful Uses of Outer Space, Cospas-Sarsat, International Astronautical Federation, Committee on Space Research (COSPAR), Inter-Agency Space Debris Coordination Committee (IADC), International Space University, and the Committee on Earth Observation Satellite (CEOS).[220]
  • Contributing to planned BRICS virtual constellation for remote sensing.[227][228]

Statistics

Last updated: 24 October 2023

  • Total number of foreign satellites launched by ISRO: 381 (34 countries)[229]
  • Spacecraft missions: 116[230]
  • Launch missions: 86
  • Student satellites: 13 [231]
  • Re-entry missions: 2

Budget for the Department of Space

Annual Budget of Department of Space over the years
Budget of Department of Space as percentage of Indian GDP
Department of Space budget as percentage of Total Expenditure
Calendar Year GDP (2011-12 base year) in crores(₹)[232] Total Expenditure in crores (₹) Budget of Department of Space[233] Notes and references
Nominal INR (crore)  % of GDP % of Total Expenditure 2020 Constant INR (crore)
1972-73 55245 18.2325000 0.03% 696.489 Revised Estimate as Actuals are not available [234][235]
1973-74 67241 19.0922000 0.03% 624.381 Revised Estimate as Actuals are not available [236][237]
1974-75 79378 30.7287000 0.04% 781.901 [238]
1975-76 85212 36.8379000 0.04% 879.281 [239]
1976-77 91812 41.1400000 0.04% 1,062.174 Revised Estimate as Actuals are not available [239]
1977-78 104024 37.3670000 0.04% 890.726 [240]
1978-79 112671 51.4518000 0.05% 1,196.291 [241]
1979-80 123562 57.0062000 0.05% 1,247.563 [242]
1980-81 147063 82.1087000 0.06% 1,613.259 [243]
1981-82 172776 109.132100 0.06% 1,896.051 Revised Estimate as Actuals are not available [244][245]
1982-83 193255 94.8898000 0.05% 1,527.408 [246]
1983-84 225074 163.365600 0.07% 2,351.37 [247]
1984-85 252188 181.601000 0.07% 2,410.543 [248]
1985-86 284534 229.102300 0.08% 2,881.303 [249]
1986-87 318366 309.990900 0.1% 3,585.645 [250]
1987-88 361865 347.084600 0.1% 3,690.41 [251]
1988-89 429363 422.367000 0.1% 4,105.274 [252]
1989-90 493278 398.559500 0.08% 3,616.972 [253]
1990-91 576109 105298 386.221800 0.07% 0.37% 3,217.774 [254][255]
1991-92 662260 111414 460.101000 0.07% 0.41% 3,366.237 [256][255]
1992-93 761196 122618 490.920400 0.06% 0.4% 3,210.258 [257][255]
1993-94 875992 141853 695.335000 0.08% 0.49% 4,277.163 [258][255]
1994-95 1027570 160739 759.079300 0.07% 0.47% 4,237.768 [259][255][260]
1995-96 1205583 178275 755.778596 0.06% 0.42% 3,826.031 [261][255][260]
1996-97 1394816 201007 1062.44660 0.08% 0.53% 4,935.415 [262][255][260]
1997-98 1545294 232053 1050.50250 0.07% 0.45% 4,550.066 [263][260]
1998-99 1772297 279340 1401.70260 0.08% 0.5% 5,364.608 [264][260][265]
1999-00 1988262 298053 1677.38580 0.08% 0.56% 6,123.403 [266][260][265]
2000-01 2139886 325592 1905.39970 0.09% 0.59% 6,686.851 [267][260][265]
2001-02 2315243 362310 1900.97370 0.08% 0.52% 6,429.035 [268][265][269]
2002-03 2492614 413248 2162.22480 0.09% 0.52% 7,010.441 [270][265][269]
2003-04 2792530 471203 2268.80470 0.08% 0.48% 7,085.999 [271][265][269]
2004-05 3186332 498252 2534.34860 0.08% 0.51% 7,627.942 [272][265][269]
2005-06 3632125 505738 2667.60440 0.07% 0.53% 7,701.599 [273][265][269]
2006-07 4254629 583387 2988.66550 0.07% 0.51% 8,156.366 [274][269][275]
2007-08 4898662 712671 3278.00440 0.07% 0.46% 8,408.668 [276][269][275]
2008-09 5514152 883956 3493.57150 0.06% 0.4% 8,273.225 [277][269][275]
2009-10 6366407 1024487 4162.95990 0.07% 0.41% 8,894.965 [278][275]
2010-11 7634472 1197328 4482.23150 0.06% 0.37% 8,542.8 [279][275]
2011-12 8736329 1304365 3790.78880 0.04% 0.29% 6,636.301 [280][275]
2012-13 9944013 1410372 4856.28390 0.05% 0.34% 7,778.216 [281][275]
2013-14 11233522 1559447 5168.95140 0.05% 0.33% 7,464 [282][275]
2014-15 12467960 1663673 5821.36630 0.05% 0.35% 7,902.702 [283][284]
2015-16 13771874 1790783 6920.00520 0.05% 0.39% 8,872.483 [285][286]
2016-17 15391669 1975194 8039.99680 0.05% 0.41% 9,820.512 [287][288]
2017-18 17090042 2141973 9130.56640 0.05% 0.43% 10,881.647 [289][290]
2018-19 18886957 2315113 11192.6566 0.06% 0.48% 12,722.226 [291][292]
2019-20 20351013 2686330 13033.2917 0.06% 0.49% 13,760.472 [293][294]
2020-21 19745670 3509836 9490.05390 0.05% 0.27% 9,490.054 [295][296]

Controversies

S-band spectrum scam

In India, electromagnetic spectrum, a scarce resource for wireless communication, is auctioned by the Government of India to telecom companies for use. As an example of its value, in 2010, 20 MHz of 3G spectrum was auctioned for 677 billion (US$8.5 billion). This part of the spectrum is allocated for terrestrial communication (cell phones). However, in January 2005, Antrix Corporation (commercial arm of ISRO) signed an agreement with Devas Multimedia (a private company formed by former ISRO employees and venture capitalists from the US) for lease of S band transponders (amounting to 70 MHz of spectrum) on two ISRO satellites (GSAT 6 and GSAT 6A) for a price of 14 billion (US$180 million), to be paid over a period of 12 years. The spectrum used in these satellites (2500 MHz and above) is allocated by the International Telecommunication Union specifically for satellite-based communication in India. Hypothetically, if the spectrum allocation is changed for utilisation for terrestrial transmission and if this 70 MHz of spectrum were sold at the 2010 auction price of the 3G spectrum, its value would have been over 2,000 billion (US$25 billion). This was a hypothetical situation. However, the Comptroller and Auditor-General considered this hypothetical situation and estimated the difference between the prices as a loss to the Indian Government.[297][298]

There were lapses on implementing official procedures. Antrix/ISRO had allocated the capacity of the above two satellites exclusively to Devas Multimedia, while the rules said it should always be non-exclusive. The Cabinet was misinformed in November 2005 that several service providers were interested in using satellite capacity, while the Devas deal was already signed. Also, the Space Commission was not informed when approving the second satellite (its cost was diluted so that Cabinet approval was not needed). ISRO committed to spending 7.66 billion (US$96 million) of public money on building, launching, and operating two satellites that were leased out for Devas.[299] In late 2009, some ISRO insiders exposed information about the Devas-Antrix deal,[298][300] and the ensuing investigations led to the deal's annulment. G. Madhavan Nair (ISRO Chairperson when the agreement was signed) was barred from holding any post under the Department of Space. Some former scientists were found guilty of "acts of commission" or "acts of omission". Devas and Deutsche Telekom demanded US$2 billion and US$1 billion, respectively, in damages.[301] The Department of Revenue and Ministry of Corporate Affairs began an inquiry into Devas shareholding.[299]

The Central Bureau of Investigation registered a case against the accused in the Antrix-Devas deal under Section 120-B, besides Section 420 of IPC and Section 13(2) read with 13(1)(d) of PC Act, 1988 in March 2015 against the then executive director of Antrix Corporation, two officials of a USA-based company, a Bangalore-based private multimedia company, and other unknown officials of the Antrix Corporation or the Department of Space.[302][303]

Devas Multimedia started arbitration proceedings against Antrix in June 2011. In September 2015, the International Court of Arbitration of the International Chamber of Commerce ruled in favour of Devas, and directed Antrix to pay US$672 million (Rs 44.35 billion) in damages to Devas.[304] Antrix opposed the Devas plea for tribunal award in the Delhi High Court.[305]

See also

  • Comparison of Asian national space programs
  • Deep Ocean mission
  • Indian Institute of Space Science and Technology
  • List of government space agencies
  • List of ISRO missions
  • New Space India Limited
  • Science and technology in India
  • Space industry of India
  • Swami Vivekananda Planetarium
  • Telecommunications in India
  • Timeline of Solar System exploration

Notes

  1. ISO 15919: Bhāratīya Antarikṣ Anusandhān Saṅgaṭhan Bhāratīya Antrikṣ Anusandhān Saṅgaṭhan
  2. CNSA (China), ESA (most of Europe), ISRO, (India), JAXA (Japan), NASA (United States) and Roscosmos (Russia) are space agencies with full launch capabilities.

References

  1. "ISRO gets new identity". Indian Space Research Organisation. Archived from the original on 20 August 2018. Retrieved 19 August 2018.
  2. "A 'vibrant' new logo for ISRO". Times of India. 19 August 2002. Archived from the original on 9 September 2018. Retrieved 19 August 2018.
  3. "Chairman ISRO, Secretary DOS". 18 January 2022. Archived from the original on 13 January 2022. Retrieved 18 January 2022.
  4. "Annual Report 2021–22, Department of Space" (PDF). 27 April 2022. Archived (PDF) from the original on 27 April 2022. Retrieved 28 April 2022.
  5. "Budget 2022: Space gets Rs 13,700 crore as India pushes Gaganyaan, missions to Sun, Venus". India Today. 1 February 2022. Archived from the original on 1 February 2022. Retrieved 2 February 2022.
  6. "ISRO – Vision and Mission Statements". ISRO. Archived from the original on 4 September 2015. Retrieved 27 August 2015.
  7. TE Narasimhan (7 January 2014). "ISRO on cloud nine as India joins "cryo club"". Business Standard. Chennai. Retrieved 12 March 2021.
  8. Harvey, Smid & Pirard 2011, pp. 144–.
  9. "Government of India Atomic Energy Commission | Department of Atomic Energy". Archived from the original on 29 August 2019. Retrieved 21 September 2019.
  10. Bhargava & Chakrabarti 2003, pp. 39.
  11. Sadeh 2013, pp. 303-.
  12. "Department of Space and ISRO HQ – ISRO". Archived from the original on 28 March 2019. Retrieved 28 March 2019.
  13. "Aryabhata – ISRO". www.isro.gov.in. Archived from the original on 15 August 2018. Retrieved 15 August 2018.
  14. "Transported on a bicycle, launched from a church: The fascinating story of India's first rocket launch". India Today. 22 June 2016. Archived from the original on 12 October 2019. Retrieved 12 October 2019.
  15. Daniel 1992, pp. 486.
  16. Daniel 1992, pp. 487.
  17. Daniel 1992, pp. 488.
  18. Daniel 1992, pp. 489.
  19. Pawar, Ashwini (29 July 2015). "I'm proud that I recommended him for ISRO: EV Chitnis". DNA India. Archived from the original on 9 July 2021. Retrieved 13 July 2021.
  20. "About ISRO – ISRO". Archived from the original on 28 March 2019. Retrieved 28 March 2019.
  21. Chari, Sridhar K (22 July 2006). "Sky is not the limit". The Tribune. Archived from the original on 19 September 2020. Retrieved 14 March 2021.
  22. Sheehan, Michael (2007). The international politics of space. London: Routledge. pp. 59–61. ISBN 978-0-415-39917-3. Archived from the original on 13 April 2021. Retrieved 14 March 2021.
  23. "Indian ambitions in space go sky-high". New Scientist. 22 January 1981. p. 215. Archived from the original on 13 April 2021. Retrieved 14 March 2021.
  24. "First Successful Launch of SLV-3 – Silver Jubilee" (PDF). ISRO. July–September 2005. p. 17. Archived (PDF) from the original on 12 November 2020. Retrieved 15 March 2021.
  25. "SLV". isro.gov.in. Archived from the original on 29 May 2017. Retrieved 15 March 2021.
  26. Sutton, George Paul (2006). History of Liquid Propellant Rocket Engines. AIAA. p. 799. ISBN 978-1-56347-649-5. Archived from the original on 13 April 2021. Retrieved 14 March 2021.
  27. "Timeline of LPSC". Liquid Propulsion Systems Centre. Archived from the original on 9 March 2021. Retrieved 15 March 2021.
  28. Menon, Amarnath (15 April 1987). "Setback in the sky". India Today. Archived from the original on 20 January 2014. Retrieved 18 January 2014.
  29. "Communication Satellites". Indian Space Research Organisation. Archived from the original on 26 February 2021. Retrieved 16 March 2021.
  30. Navalgund, R. R.; Kasturirangan, K. (1 December 1983). "The Indian remote sensing satellite: a programme overview". Proceedings of the Indian Academy of Sciences Section C: Engineering Sciences. 6 (4): 313–336. Bibcode:1983InES....6..313N. doi:10.1007/BF02881137. ISSN 0973-7677. S2CID 140649818.
  31. "The Saga of Indian Remote Sensing Satellite System – ISRO". www.isro.gov.in. Archived from the original on 27 June 2019. Retrieved 16 March 2021.
  32. "PSLV (1)". Gunter's Space Page. Archived from the original on 5 December 2020. Retrieved 16 March 2021.
  33. Subramanian, T S (17–31 March 2001). "The GSLV Quest". Frontline. Archived from the original on 1 April 2014. Retrieved 16 March 2021.
  34. Raj, N Gopal (21 April 2011). "The long road to cryogenic technology". The Hindu. Chennai, India. Archived from the original on 21 June 2014. Retrieved 12 December 2013.
  35. Subramanian, T S (28 April – 11 May 2001). "The cryogenic quest". Frontline. Archived from the original on 13 December 2013. Retrieved 13 December 2013.
  36. "Why ISRO's New Engine and Mk III Rocket Are Reasons to Forget 1990 Cryogenic Scandal". The Wire. Archived from the original on 11 February 2018. Retrieved 10 February 2018.
  37. "Master Sanctions Chart – State Department" (PDF). 20 April 2021. Archived (PDF) from the original on 4 May 2021. Retrieved 4 May 2021.
  38. Srivastava, Ishan (5 April 2014). "How Kargil spurred India to design own GPS". The Times of India. Archived from the original on 15 December 2016. Retrieved 9 December 2014.
  39. "India 'on course' for the Moon". BBC News. 4 April 2003. Archived from the original on 21 January 2019. Retrieved 16 March 2021.
  40. "MIP detected water on Moon way back in June: ISRO Chairman". The Hindu. 25 September 2009. Archived from the original on 25 January 2016. Retrieved 12 March 2021.
  41. Burke, Jason (24 September 2014). "India's Mars satellite successfully enters orbit, bringing country into space elite". The Guardian. Archived from the original on 4 December 2019. Retrieved 16 March 2021. India has become the first nation to send a satellite into orbit around Mars on its first attempt, and the first Asian nation to do so.
  42. "GSLV Mk III". ISRO. Archived from the original on 20 September 2018. Retrieved 16 March 2021.
  43. Rajagopalan & Prasad 2017, pp. 1–2.
  44. Burleson 2005, p. 136.
  45. "Dr. Vikram Ambalal Sarabhai (1963–1971) – ISRO". Archived from the original on 22 April 2019. Retrieved 21 September 2019.
  46. "List of Important Speeches And Papers By Dr. Vikram A. Sarabhai" (PDF). PRL.res.in. p. 113. Archived from the original (PDF) on 27 June 2019. Retrieved 27 June 2019.
  47. Kalam, Avul Pakir Jainulabdeen Abdul; Tiwari, Arun (1999). Wings of Fire: An Autobiography. Universities Press. ISBN 9788173711466. Archived from the original on 17 April 2017. Retrieved 16 August 2019.
  48. "Hennock etc. (2008), "The Real Space Race Is in Asia", Newsweek". Newsweek. 20 September 2008. Archived from the original on 22 December 2008. Retrieved 25 December 2008.
  49. "Communication Satellites". ISRO. Retrieved 22 July 2022.{{cite web}}: CS1 maint: url-status (link)
  50. "The Saga of Indian Remote Sensing Satellite System". ISRO. Retrieved 22 July 2022.{{cite web}}: CS1 maint: url-status (link)
  51. "Organisation Structure". Archived from the original on 12 June 2022. Retrieved 12 June 2022.
  52. "Foundation stone of Space Situational Awareness Control Centre by Chairman, ISRO – ISRO". www.isro.gov.in. Archived from the original on 30 August 2019. Retrieved 3 August 2019.
  53. "Inauguration of Human Space Flight Centre (HSFC) – ISRO". www.isro.gov.in. Archived from the original on 29 March 2019. Retrieved 3 August 2019.
  54. "NEC – North Eastern Council". Necouncil.nic.in. Archived from the original on 25 February 2012. Retrieved 8 February 2013.
  55. Ojha, pp. 142.
  56. Suri & Rajaram, pp. 414.
  57. "About Us". National Atmospheric Research Laboratory. Retrieved 22 July 2022.{{cite web}}: CS1 maint: url-status (link)
  58. Suri & Rajaram, pp. 415.
  59. "About NESAC". North-Eastern Space Applications Centre. Retrieved 22 July 2022.{{cite web}}: CS1 maint: url-status (link)
  60. "Second Vehicle Assembly Building being realised at ISRO". The Economic Times. 11 January 2016. Archived from the original on 14 January 2016. Retrieved 20 January 2016.
  61. Madumathi, D.S. (6 January 2016). "Sriharikota space port scores 50". The Hindu. Archived from the original on 9 January 2016. Retrieved 20 January 2016.
  62. "Sounding Rockets". ISRO. Retrieved 22 July 2022.{{cite web}}: CS1 maint: url-status (link)
  63. "Indian Space Science Data Centre (ISSDC) - Gateway to India's Space Science Data". ISRO. Retrieved 22 July 2022.{{cite web}}: CS1 maint: url-status (link)
  64. "SRO Telemetry, Tracking and Command Network (ISTRAC)". ISRO. Retrieved 22 July 2022.{{cite web}}: CS1 maint: url-status (link)
  65. Suri & Rajaram, pp. 416.
  66. Singh, Surendra (5 August 2019). "New Isro system to shield its assets from space debris". The Times of India. Archived from the original on 26 August 2019. Retrieved 6 August 2019.
  67. Kumar, Chethan (4 August 2019). "Isro keen on protecting space assets; new centre soon". The Times of India. Archived from the original on 25 August 2019. Retrieved 6 August 2019.
  68. "Institute Profile". Indian Institute of Remote Sensing. Retrieved 22 July 2022.
  69. "Institute IIST". Indian Institute of Space Science and Technology. Retrieved 22 July 2022.{{cite web}}: CS1 maint: url-status (link)
  70. "Space tech centre: ISRO team in NIT-Rourkela". New Indian Express. ENS. 10 March 2021. Archived from the original on 10 March 2021. Retrieved 12 March 2021.
  71. "Dr. K. Sivan, Chairman, ISRO / Secretary, DOS inaugurates 3 Space Technology Incubation Centres and releases युक्ति-संचिता YUKTI- Sanchita 2021". ISRO. 18 March 2021. Archived from the original on 19 March 2021. Retrieved 20 March 2021.
  72. "Isro opens space tech incubation centre at NIT-T". The Times of India. 30 May 2019. Archived from the original on 28 September 2020. Retrieved 1 June 2019.
  73. "Space Innovation Centre – ISRO". www.isro.gov.in. Archived from the original on 9 July 2021. Retrieved 7 July 2021.
  74. "VSSUT first to set up Space Innovation-cum-Incubation Centre with ISRO". Hindustan Times. 26 August 2020. Archived from the original on 9 July 2021. Retrieved 7 July 2021.
  75. "ISRO to set up its regional centre at IIT-BHU". Hindustan Times. 24 December 2020. Archived from the original on 27 December 2020. Retrieved 27 December 2020.
  76. "Antrix responsible for marketing ISRO tech". The Times of India. Archived from the original on 26 April 2013. Retrieved 24 February 2013.
  77. "ISRO's commercial arm Antrix gets new chief". The Hindu. 9 June 2011. Archived from the original on 30 May 2022. Retrieved 24 February 2013.
  78. "ISRO's NewSpace India Limited takes off in Bengaluru". Deccan Herald. 27 May 2019. Archived from the original on 1 August 2020. Retrieved 10 January 2020.
  79. "Advanced Space Research Group (ASRG)". Archived from the original on 21 June 2021. Retrieved 6 March 2022.
  80. "ISRO embarking on replicating NASA partnership model in India". The Hindu. PTI. 26 March 2021. Archived from the original on 26 March 2021. Retrieved 31 March 2021.
  81. Pathri, Rajasekhar (16 May 2015). "Isro's tracking radar to start work". Deccan Chronicle. Archived from the original on 30 September 2021. Retrieved 30 September 2021.
  82. "ISRO chairman lays foundation stone for Space Situational Awareness Control Centre in Bengaluru". ANI. IANS. 3 August 2019. Archived from the original on 3 August 2019. Retrieved 11 April 2022.
  83. Singh, Surendra (5 August 2019). "New Isro system to shield its assets from space debris". The Times of India. Archived from the original on 26 August 2019. Retrieved 26 September 2021.
  84. D.S, Madhumathi (24 September 2019). "ISRO initiates 'Project NETRA' to safeguard Indian space assets from debris and other harm". The Hindu. ISSN 0971-751X. Archived from the original on 26 September 2021. Retrieved 26 September 2021.
  85. "India, United States to sign space MoU during 2+2 meeting in Washington". Business Standard. IANS. 11 April 2022. Archived from the original on 11 April 2022. Retrieved 11 April 2022.
  86. "Readout of U.S. - India 2+2 Ministerial Dialogue" (Press release). U.S. Department of Defense. Archived from the original on 13 April 2022. Retrieved 14 April 2022.
  87. Roy Chaudhury, Dipanjan (30 September 2021). "India, US to conclude MoU to safeguard satellites from natural, man-made threats". The Economic Times. Archived from the original on 11 April 2022. Retrieved 11 April 2022.
  88. "ISRO launches new system for space observation and debris management". The Hindu. 11 July 2022. ISSN 0971-751X. Retrieved 13 July 2022.
  89. "ISRO adopts new satellite naming style, RISAT-2BR2 now EOS-01". telanganatoday.com. 28 October 2020. Archived from the original on 2 November 2020. Retrieved 7 November 2020.
  90. "Communication satellites". ISRO. Archived from the original on 26 February 2021. Retrieved 19 March 2021.
  91. "ISRO launches India's 42nd communication satellite CMS-01 on-board PSLV-C50". Business Today. 17 December 2020. Archived from the original on 13 April 2021. Retrieved 19 March 2021.
  92. Pubby, Manu. "Indian Navy: Navy to buy Rs 1589 crore satellite from ISRO". The Economic Times. Archived from the original on 17 January 2021. Retrieved 19 March 2021.
  93. "GSAT-7A". ISRO. Archived from the original on 22 March 2021. Retrieved 19 March 2021.
  94. "GSAT-9". ISRO. Archived from the original on 15 April 2021. Retrieved 19 March 2021.
  95. "Ensuring safety and reliabity through indigenous satellite navigation system GAGAN". Times of India Blog. 12 January 2019. Archived from the original on 4 May 2019. Retrieved 19 March 2021.
  96. "Navigation Satellite". ISRO. Archived from the original on 23 October 2013. Retrieved 26 January 2014.
  97. "eoPortal directory: Kalpana-1/MetSat-1 (Meteorological Satellite-1)". Eoportal.org. Archived from the original on 8 September 2012. Retrieved 11 March 2011.
  98. "Space Technology in India | Indian Space Research Organisation (ISRO)". Indiaonline.in. Archived from the original on 21 July 2011. Retrieved 11 March 2011.
  99. "India successfully launches Indo-French, 6 foreign satellites". The Indian Express. 25 February 2013. Archived from the original on 1 March 2013. Retrieved 25 February 2013.
  100. "Satellite SARAL". Ilrs.gsfc.nasa.gov. Archived from the original on 5 July 2012. Retrieved 24 July 2012.
  101. Gupta et al. 1697.
  102. "Augumented Satellite Launch Vehicle". Archived from the original on 29 August 2009. Retrieved 19 July 2009.
  103. "PSLV (1)". Gunter's Space Page. Archived from the original on 5 December 2020. Retrieved 21 March 2021.
  104. "'India masters rocket science': Here's why the new ISRO launch is special". Hindustan Times. 15 November 2018. Archived from the original on 15 November 2018. Retrieved 19 March 2021.
  105. "Gaganyaan: Isro's unmanned space mission for December 2020 likely to be delayed". Business Standard. 16 August 2020. Archived from the original on 13 April 2021. Retrieved 19 March 2021 via Press Trust of India.
  106. "Episode 90 – An update on ISRO's activities with S Somanath and R Umamaheshwaran". AstrotalkUK. 24 October 2019. Archived from the original on 29 October 2019. Retrieved 19 March 2021.
  107. "GSLV MkIII-D2 successfully launches GSAT-29". ISRO. Archived from the original on 14 November 2018. Retrieved 14 November 2018.
  108. "SSLV technical brochure V12" (PDF). 20 December 2019. Archived (PDF) from the original on 20 December 2019. Retrieved 20 December 2019.
  109. Gunter's space page: SSLV
  110. "SSLV". space.skyrocket.de. Retrieved 9 December 2018.
  111. "Department of Space presentation on 18 January 2019" (PDF). 18 January 2019. Retrieved 30 January 2019.
  112. "Scientists Discuss Indian Manned Space Mission". ISRO. 7 November 2006. Archived from the original on 13 April 2021. Retrieved 20 March 2021.
  113. "ISRO considering manned space mission: Nair". The Hindu. Chennai, India. 9 August 2007. Archived from the original on 30 September 2007. Retrieved 20 March 2021.
  114. "Space Capsule Recovery Experiment(SRE)" (PDF). 21 November 2007. Archived from the original (PDF) on 24 December 2013. Retrieved 20 March 2021.
  115. "Plan panel okays ISRO manned space flight". The Indian Express. 23 February 2009. Archived from the original on 7 June 2009. Retrieved 11 March 2011.
  116. "Satellites Are Our Priority Now, Not Human Space Flight". Outlook. 15 July 2017. Archived from the original on 29 October 2021. Retrieved 20 March 2021.
  117. Kandavel, Sangeetha (18 December 2014). "GSLV Mark III takes to the skies in test flight". The Hindu. Archived from the original on 2 June 2017. Retrieved 7 September 2018.
  118. "India to launch unmanned crew module in December". The Economic Times. 30 October 2014. Archived from the original on 2 November 2014. Retrieved 20 March 2021.
  119. "ISRO's first 'pad abort' test, critical for future human space mission, successful". The Hindu. 5 July 2018. Archived from the original on 5 July 2018. Retrieved 15 August 2018 via www.thehindu.com.
  120. "Gaganyaan mission to take Indian astronaut to space by 2022: PM Modi". The Hindu. 15 August 2018. Archived from the original on 27 April 2021. Retrieved 15 August 2018 via www.thehindu.com.
  121. "Indian Astronaut Will Be in Space For 7 Days, Confirms ISRO Chairman". Archived from the original on 15 August 2018. Retrieved 15 August 2018.
  122. "JFK in 1961, Modi in 2018: PM announces 'Indian in space by 2022,' but is ISRO ready?". 15 August 2018. Archived from the original on 15 August 2018. Retrieved 15 August 2018.
  123. Ds, Madhumathi (11 January 2019). "ISRO starts Human Space Flight centre". The Hindu. ISSN 0971-751X. Archived from the original on 31 May 2019. Retrieved 11 January 2019.
  124. "Inauguration of Human Space Flight Centre (HSFC) – ISRO". www.isro.gov.in. Archived from the original on 29 March 2019. Retrieved 8 March 2019.
  125. "India's human space programme gets a fillip". The New Indian Express. Archived from the original on 12 January 2019. Retrieved 11 January 2019. Initially, the plan was the construct a new launch pad for the human space flight, but Sivan told the Express that due to paucity of time one of the two existing launch pads is being modified to meet the requirement.
  126. "Gaganyaan: India chooses Russia to pick & train astronauts". The Times of India. 1 July 2019. Archived from the original on 23 July 2019. Retrieved 1 August 2019.
  127. Singh, Surendra (31 July 2019). "Isro will set up unit in Moscow to develop technology needed for Gaganyaan mission". The Times of India. Archived from the original on 20 August 2019. Retrieved 1 August 2019.
  128. Kumar, Chethan (19 March 2021). "Gaganyaan: Astronauts clear all tests, Russia training to end this month". The Times of India. Archived from the original on 21 March 2021. Retrieved 21 March 2021.
  129. Singh, Surendra (17 February 2021). "Gaganyaan manned mission not before 2023: Minister". The Times of India. Archived from the original on 26 April 2021. Retrieved 23 July 2021.
  130. "India planning to have own space station: ISRO chief". The Economic Times. 13 June 2019. Archived from the original on 2 July 2019. Retrieved 21 July 2019.
  131. "India's own space station to come up in 5–7 years: Isro chief". The Times of India. 13 June 2019. Archived from the original on 4 August 2019. Retrieved 22 July 2019.
  132. "India's space station likely to have space for three". The Times of India. 31 October 2019. Archived from the original on 31 October 2019. Retrieved 1 November 2019.
  133. Peri, Dinakar (13 June 2019). "India to have its own space station: ISRO". The Hindu. ISSN 0971-751X. Archived from the original on 10 August 2019. Retrieved 1 November 2019. Giving out broad contours of the planned space station, Dr. Sivan said it has been envisaged to weigh 20 tonnes and will be placed in an orbit of 400 km above earth where astronauts can stay for 15-20 days. The time frame is 5-7 years after Gaganyaan, he stated.
  134. "Balloon X-ray astronomy experiments from India". Archived from the original on 28 May 2002. Retrieved 17 March 2009.
  135. "Stratospheric balloon launch bases and sites". StratoCat. Archived from the original on 3 March 2016. Retrieved 4 November 2015.
  136. Harris, Melanie J.; Wickramasinghe, N.C.; Lloyd, David; et al. (2002). "Detection of living cells in stratospheric samples" (PDF). Proc. SPIE. Instruments, Methods, and Missions for Astrobiology IV. 4495 (Instruments, Methods, and Missions for Astrobiology IV): 192. Bibcode:2002SPIE.4495..192H. doi:10.1117/12.454758. S2CID 129736236. Archived (PDF) from the original on 22 September 2017. Retrieved 21 September 2019.
  137. Shivaji, S.; Chaturvedi, P.; Begum, Z.; et al. (2009). "Janibacter hoylei sp.nov., Bacillus isronensis sp.nov. and Bacillus aryabhattai sp.nov. isolated from cryotubes used for collecting air from the upper atmosphere". International Journal of Systematic and Evolutionary Microbiology. 59 (12): 2977–2986. doi:10.1099/ijs.0.002527-0. PMID 19643890.
  138. "Three years of AstroSat – ISRO". www.isro.gov.in. Archived from the original on 30 August 2019. Retrieved 28 September 2018.
  139. "A mix of young and middle-aged people will train for Gaganyaan". The Week. Archived from the original on 28 January 2020. Retrieved 20 March 2021.
  140. "domain-b.com : American astronautics society award for Chandrayaan-1 team". Archived from the original on 23 September 2015. Retrieved 12 June 2015.
  141. Choudhury, Shubhadeep (30 November 2008). "Chandrayaan-1 wins global award". Bangalore. Tribune News Service. Archived from the original on 8 August 2014. Retrieved 2 February 2015.
  142. "NSS awards for 2009". National Space Society. Archived from the original on 2 February 2015. Retrieved 2 February 2015.
  143. Hoover, Rachel (17 June 2010). "NASA's Lunar Impact Mission Honored by National Space Society". National Aeronautics and Space Administration. Archived from the original on 9 January 2013. Retrieved 2 February 2013.
  144. "India launches second Moon mission". British Broadcasting Corporation. 22 July 2019. Archived from the original on 22 August 2019. Retrieved 23 July 2019.
  145. Singh, Surendra (5 August 2018). "Chandrayaan-2 launch put off: India, Israel in lunar race for 4th position". The Times of India. Times News Network. Archived from the original on 19 August 2018. Retrieved 15 August 2018.
  146. "India Successfully Launches Chandrayaan-2, Aims to Become First to Probe Lunar South Pole". News18. 23 July 2019. Archived from the original on 23 July 2019. Retrieved 23 July 2019.
  147. "NASA – NSSDCA – Spacecraft – Details". nssdc.gsfc.nasa.gov. Archived from the original on 29 July 2019. Retrieved 23 July 2019.
  148. "Chandrayaan2 Home – ISRO". www.isro.gov.in. Archived from the original on 29 July 2019. Retrieved 23 July 2019.
  149. How did Chandrayaan 2 fail? ISRO finally has the answer. Archived 19 February 2021 at the Wayback Machine Mahesh Guptan, The Week. 16 November 2019.
  150. "Chandrayaan2 Latest updates – ISRO". www.isro.gov.in. Archived from the original on 4 September 2019. Retrieved 2 December 2019.
  151. Dutt, Anonna (4 January 2022). "ISRO targets Gaganyaan launch before Independence day, Chandrayaan 3 by mid-2023". The Indian Express. Archived from the original on 7 January 2022. Retrieved 7 January 2022.
  152. "India becomes first country to enter Mars' orbit on their first attempt". Herald Sun. 24 September 2014. Archived from the original on 30 May 2022. Retrieved 24 September 2014.
  153. "India's Maiden Mars Mission Makes History". Bloomberg TV India. Archived from the original on 25 September 2014. Retrieved 24 September 2014.
  154. "Mars Orbiter Spacecraft Successfully Inserted into Mars Orbit". ISRO. Retrieved 22 July 2022.
  155. "Mars Orbiter Mission Spacecraft". ISRO. Retrieved 22 July 2022.
  156. Brandt-Erichsen, David (12 January 2015). "Indian Space Research Organisation Mars Orbiter Programme Team Wins National Space Society's Space Pioneer Award for Science and Engineering". National Space Society. Archived from the original on 2 February 2015. Retrieved 2 February 2015.
  157. "ISRO Mars Orbiter Mission team Wins Space Pioneer Award". Washington, United States: NDTV. 14 January 2015. Archived from the original on 2 February 2015. Retrieved 2 February 2015.
  158. After Mars, Venus on Isro's planetary travel list. Archived 27 August 2019 at the Wayback Machine U. Tejonmayam, Times of India. 18 May 2019.
  159. Dutt, Anonna (18 September 2020). "Gaganyaan mission: Astronauts to undergo Isro module next year". New Delhi. Archived from the original on 30 May 2022. Retrieved 20 March 2021.
  160. MP, Sidhharth (14 March 2021). "ISRO: Chandrayaan-3 launch by mid-2022, Mangalyaan-2 in definition stage". WION. Chennai. Archived from the original on 17 March 2021. Retrieved 21 March 2021.
  161. "ISRO developing heavy lift launch vehicles". The Hindi. Thiruvanantpuram. 30 May 2015. Archived from the original on 7 April 2021. Retrieved 21 March 2021.
  162. Somanath, S. (3 August 2020). Indian Innovations in Space Technology: Achievements and Aspirations (Speech). VSSC. Archived from the original on 13 September 2020. Retrieved 21 March 2021 via imgur.
  163. Siddarth MP (14 September 2021). "ISRO's new series of heavy-lift rockets to carry between 5-16 tonnes to GTO". WION. Archived from the original on 15 September 2021. Retrieved 15 September 2021.
  164. "ISRO Is Working on Two Competing Reusable Launcher Designs". Science Wire. 2 January 2019. Archived from the original on 13 April 2021. Retrieved 21 March 2021.
  165. Rajwi, Tiki (20 May 2015). "Futuristic Unmanned Space Shuttle Getting Final Touches". The New Indian Express. Archived from the original on 14 December 2017. Retrieved 13 December 2017.
  166. "Design process has been validated". Archived from the original on 30 May 2022. Retrieved 7 September 2018.
  167. "ISRO Plans To Test ground Landing Of 'Desi' Space Shuttle By Year end". Kalinga TV. 7 October 2020. Archived from the original on 13 April 2021. Retrieved 21 March 2021.
  168. "India's 19 upcoming missions, and ISRO's Small Satellite Launch Vehicle (SSLV)". SpaceTech Asia. 28 August 2018. Archived from the original on 11 September 2018. Retrieved 19 March 2021.
  169. Subramanian, T. S. (17 April 2010). "Why didn't the cryogenic engine ignite?". The Hindu. Archived from the original on 13 November 2012. Retrieved 21 March 2021.
  170. Rajwi, Tiki (30 November 2015). "ISRO to Test Electric Propulsion on Satellites". The New Indian Express. Archived from the original on 7 May 2016. Retrieved 21 March 2021.
  171. D. S., Madhumathi (1 May 2017). "GSAT-9 heralds cost-saving electric propulsion". The Hindu. Archived from the original on 15 April 2021. Retrieved 21 March 2021.
  172. NPE chapter 3 Radioisotope Power Generation Archived 18 December 2012 at the Wayback Machine
  173. Laxman, Srinivas. "ISRO plans new propulsion for deep space missions". The Times of India. Archived from the original on 10 February 2021. Retrieved 20 March 2021.
  174. Bansal, Nitansha. "ISRO plans for nuclear energy use in space". Observer Research Foundation. Archived from the original on 18 May 2021. Retrieved 19 May 2021.
  175. "ISRO Will Embark on Chandrayaan 3 by November 2020 for Another Landing Attempt". The WIRE. 14 November 2019. Archived from the original on 21 March 2021. Retrieved 20 March 2021.
  176. "Rajya Sabha Unstarred Question No. 2955". Imgur.com. Archived from the original on 13 September 2020. Retrieved 23 July 2022.
  177. "Mangalyaan-2 will be an orbiter mission: ISRO chief K Sivan". The Economic Times. Archived from the original on 12 August 2021. Retrieved 12 August 2021.
  178. "ISRO gears up for Venus mission, invites proposals from scientists". The Indian Express. New Delhi. 25 April 2017. Archived from the original on 18 June 2017. Retrieved 23 January 2018.
  179. Srinivas Laxman (17 February 2012). "India planning Venus mission". The Times of India. Archived from the original on 18 February 2012. Retrieved 24 July 2012.
  180. "After Mars, Isro aims for Venus probe in 2–3 years". The Asian Age. Archived from the original on 30 May 2015. Retrieved 12 June 2015.
  181. "Department of Space" (PDF). Ministry of Finance, Government of India. Archived from the original (PDF) on 15 December 2017. Retrieved 18 January 2018.
  182. "Announcement of Opportunity (AO) for Space Based Experiments to Study Venus". ISRO.gov.in. 19 April 2017. Archived from the original on 13 September 2017. Retrieved 13 September 2017.
  183. "ISRO to launch its Venus mission in 2025, France to take part". Livemint. PTI. 30 September 2020. Archived from the original on 31 October 2020. Retrieved 1 October 2020.
  184. "India's first solar mission in 2020: Isro chairman". The Times of India. 4 May 2019. Archived from the original on 5 July 2019. Retrieved 8 August 2019.
  185. "After Mars, India aims for Sun now". Mail Today. Mail Today. Mail Today. 13 February 2018. p. 12. Archived from the original on 6 March 2019. Retrieved 5 March 2019.
  186. "After the Moon, ISRO eyes the sun". 9 June 2011. Archived from the original on 27 September 2015. Retrieved 12 June 2015.
  187. "Aditya - L1 First Indian mission to study the Sun". ISRO. Retrieved 22 July 2022.
  188. "After Mars, ISRO looks to conquer Venus & Jupiter". Bangalore Mirror. Archived from the original on 8 January 2017. Retrieved 7 January 2017.
  189. Surendra Singh (19 February 2018). "ISRO plans to launch India's 2nd space observatory". Times of India. Archived from the original on 1 February 2019. Retrieved 20 March 2021.
  190. Dutt, Anonna (17 September 2021). "'India's first solar mission likely to launch next year': ISRO". The Hindustan Times. Archived from the original on 17 September 2021. Retrieved 18 September 2021.
  191. Future Exploration Missions of ISRO. Archived 21 September 2018 at the Wayback Machine Indian Space Research Organisation (ISRO). Dr. M. Annadurai, director, ISAC, ISRO. UNCOPUOS 60th Session, Vienna. 2019.
  192. "Chandrayaan 2 launched: Here are future ISRO missions to space". The Indian Express. 22 July 2019. Archived from the original on 26 July 2019. Retrieved 23 July 2019.
  193. "Exoworlds to take off in 2025: Kasturirangan". Deccan Herald. 5 December 2019. Archived from the original on 6 December 2019. Retrieved 6 December 2019.
  194. "Seventh convocation address IIST" (PDF). 5 July 2019. Archived (PDF) from the original on 6 December 2019. Retrieved 6 December 2019.
  195. "RAJYA SABHA UNSTARRED QUESTION NO.119 TO BE ANSWERED ON THURSDAY, NOVEMBER 22, 2012 DESIGNING OF GEO IMAGING SATELLITE" (PDF). Isro.gov.in. Retrieved 23 July 2022.
  196. "ISRO to launch two satellites under IDRSS: All about it". India Today. 17 December 2018. Archived from the original on 6 October 2019. Retrieved 5 October 2019.
  197. "Mission Concept". Jet Propulsion Laboratory. Retrieved 22 July 2022.
  198. "Space Applications Centre: 'Aeronomy satellite in advanced planning stage'". The Times of India. 23 October 2018. Archived from the original on 9 January 2019. Retrieved 18 July 2019.
  199. Kumar, Suresh (11 March 2019). Hyperspectral Remote Sensing of Salt-affected Soils : Potential & Future Prospects. Golden Jubilee International Salinity Conference (GJISC-2019). Central Soil Salinity Research Institute, Karnal, India. Archived from the original on 30 May 2022. Retrieved 24 July 2021.
  200. Bhaskaranarayana, 1738–1746
  201. Bhaskaranarayana, 1738
  202. "India goes to war in space". 18 June 2008. Archived from the original on 11 August 2010. Retrieved 2 July 2010.
  203. "India in aerospace defence plan". BBC. 28 January 2007. Archived from the original on 29 September 2009. Retrieved 24 April 2009.
  204. "India Begins Work on Space Weapons Command". SpaceDaily. 12 April 2006. Archived from the original on 9 July 2007. Retrieved 24 April 2009.
  205. Why Isro's Gsat-7A launch is important for the Indian Air Force Archived 19 December 2018 at the Wayback Machine, Times of India, 19 December 2018.
  206. "India's Tech Roadmap Points to Small Sats, Space Weapons". Archived from the original on 21 January 2015.
  207. "IAF to induct 214 fifth generation fighter jets". Archived from the original on 3 July 2012.
  208. Rohit, T. k (19 December 2018). "GSAT-7A, ISRO's 'angry bird', takes to the skies". The Hindu. ISSN 0971-751X. Archived from the original on 1 June 2020. Retrieved 24 July 2019.
  209. Special Correspondent (22 May 2019). "ISRO launches radar imaging observation satellite RISAT-2B". The Hindu. ISSN 0971-751X. Archived from the original on 22 May 2019. Retrieved 24 July 2019.
  210. D.s, Madhumathi (1 April 2019). "India gets surveillance satellite". The Hindu. ISSN 0971-751X. Archived from the original on 5 June 2019. Retrieved 24 July 2019.
  211. Mistry, 94–95
  212. Bhaskaranarayana, 1744
  213. Bhaskaranarayana, 1737
  214. Sen, 490
  215. Burleson 2005, p. 143.
  216. "Space Spin Offs From ISRO". ISRO. Archived from the original on 13 April 2021. Retrieved 22 March 2021.
  217. Sreerekha, U (20 June 2019). "Spin-off benefits of the Indian Space Programme" (PDF). Archived (PDF) from the original on 20 September 2019. Retrieved 22 March 2021.
  218. "ISRO – International co-operation". Indian Space Research Organisation. Archived from the original on 12 February 2015. Retrieved 27 February 2015.
  219. Bhardwaj, Anil; Barabash, Stas; Futaana, Yoshifumi; Kazama, Yoichi; Asamura, Kazushi; McCann, David; Sridharan, R.; Holmstrom, Mats; Wurz, Peter; Lundin, Rickard (December 2005). "Low energy neutral atom imaging on the Moon with the SARA instrument aboard Chandrayaan-1 mission" (PDF). Journal of Earth System Science. 114 (6): 749–760. Bibcode:2005JESS..114..749B. doi:10.1007/BF02715960. S2CID 55554166. Archived (PDF) from the original on 23 April 2021. Retrieved 21 March 2021.
  220. Suri & Rajaram 447.
  221. "Satellite SARAL". Ilrs.gsfc.nasa.gov. Archived from the original on 5 July 2012. Retrieved 21 March 2021.
  222. "India, France working on third joint space mission: ISRO Chairman". The Hindu. 20 March 2021. Archived from the original on 21 March 2021. Retrieved 22 March 2021.
  223. "Episode 82: JAXA and International Collaboration with Professor Fujimoto Masaki". Astro Talk UK. 4 January 2019. Archived from the original on 16 January 2021. Retrieved 10 March 2021.
  224. "U.S., India to Collaborate on Mars Exploration, Earth-Observing Mission". NASA official website. National Aeronautics and Space Administration. 30 September 2014. Archived from the original on 30 September 2014. Retrieved 1 October 2014.
  225. "Satellite Aided Search and Rescue". ISRO. Retrieved 22 July 2022.
  226. "Center for Space Science and Technology Education in Asia and the Pacific (CSSTEAP)". UN-SPIDER. Retrieved 22 July 2022.
  227. Kunhikrishnan, P. (20 June 2019). "Update on ISRO's International Cooperation" (PDF). p. 10. Archived (PDF) from the original on 30 June 2019. Retrieved 30 June 2019.
  228. "В орбитальную группировку стран БРИКС войдут пять космических аппаратов". РИА Новости (in Russian). 28 June 2019. Archived from the original on 7 July 2019. Retrieved 30 June 2019.
  229. "List of International Customer Satellites Launched by ISRO" (PDF). 23 October 2022. Archived from the original (PDF) on 23 October 2022. Retrieved 24 October 2022.
  230. "Missions accomplished". www.isro.gov.in. Retrieved 24 October 2022.
  231. "List of University / Academic Institute Satellites – ISRO". www.isro.gov.in. Archived from the original on 19 August 2019. Retrieved 4 December 2019.
  232. "Economic Survey 2021-22 Statistical Appendix" (PDF). p. 17. Archived from the original (PDF) on 11 May 2022. Retrieved 29 May 2022. Table 1.6: Components of Gross Domestic Product at Current Prices
  233. "Archive of Demands for Grants". Archived from the original on 29 May 2022. Retrieved 29 May 2022.
  234. "Detailed Demands of Grants of Department of Space for 1973-74" (PDF). p. 06. Archived (PDF) from the original on 13 October 2021. Retrieved 30 May 2022.
  235. "Detailed Demands of Grants of Department of Space for 1974-75" (PDF). Archived (PDF) from the original on 13 October 2021. Retrieved 30 May 2022.
  236. "Detailed Demands of Grants of Department of Space for 1974-75" (PDF). p. 13.
  237. "Detailed Demands of Grants of Department of Space for 1975-76" (PDF). Archived (PDF) from the original on 13 October 2021. Retrieved 30 May 2022.
  238. "Detailed Demands of Grants of Department of Space for 1976-77" (PDF). p. 27. Archived (PDF) from the original on 13 October 2021. Retrieved 30 May 2022.
  239. "Detailed Demands of Grants of Department of Space for 1977-78" (PDF). p. 32. Archived (PDF) from the original on 13 October 2021. Retrieved 30 May 2022.
  240. "Detailed Demands of Grants of Department of Space for 1979-80" (PDF). p. 33. Archived (PDF) from the original on 13 October 2021. Retrieved 30 May 2022.
  241. "Detailed Demands of Grants of Department of Space for 1980-81" (PDF). p. 36. Archived (PDF) from the original on 13 October 2021. Retrieved 30 May 2022.
  242. "Detailed Demands of Grants of Department of Space for 1981-82" (PDF). p. 36. Archived (PDF) from the original on 13 October 2021. Retrieved 30 May 2022.
  243. "Detailed Demands of Grants of Department of Space for 1982-83" (PDF). p. 39. Archived (PDF) from the original on 13 October 2021. Retrieved 30 May 2022.
  244. "Detailed Demands of Grants of Department of Space for 1982-83" (PDF). p. 38.
  245. "Detailed Demands of Grants of Department of Space for 1983-84" (PDF). Archived (PDF) from the original on 13 October 2021. Retrieved 30 May 2022.
  246. "Detailed Demands of Grants of Department of Space for 1984-85" (PDF). p. 48. Archived (PDF) from the original on 13 October 2021. Retrieved 30 May 2022.
  247. "Detailed Demands of Grants of Department of Space for 1985-86" (PDF). p. 53. Archived (PDF) from the original on 13 October 2021. Retrieved 30 May 2022.
  248. "Detailed Demands of Grants of Department of Space for 1986-87" (PDF). p. 49. Archived (PDF) from the original on 13 October 2021. Retrieved 30 May 2022.
  249. "Detailed Demands of Grants of Department of Space for 1987-88" (PDF). p. 45. Archived (PDF) from the original on 13 October 2021. Retrieved 30 May 2022.
  250. "Detailed Demands of Grants of Department of Space for 1988-89" (PDF). p. 48. Archived (PDF) from the original on 13 October 2021. Retrieved 30 May 2022.
  251. "Detailed Demands of Grants of Department of Space for 1989-90" (PDF). p. 50. Archived (PDF) from the original on 13 October 2021. Retrieved 30 May 2022.
  252. "Detailed Demands of Grants of Department of Space for 1990-91" (PDF). p. 48. Archived (PDF) from the original on 13 October 2021. Retrieved 30 May 2022.
  253. "Detailed Demands of Grants of Department of Space for 1991-92" (PDF). p. 50. Archived (PDF) from the original on 13 October 2021. Retrieved 30 May 2022.
  254. "Detailed Demands of Grants of Department of Space for 1992-93" (PDF). p. 52. Archived (PDF) from the original on 13 October 2021. Retrieved 30 May 2022.
  255. "1999-2000 Expenditure Budget Vol. I: Trends in Expenditure" (PDF). Archived (PDF) from the original on 20 May 2022. Retrieved 30 May 2022.
  256. "Detailed Demands of Grants of Department of Space for 1993-94" (PDF). p. 54. Archived (PDF) from the original on 13 October 2021. Retrieved 30 May 2022.
  257. "Detailed Demands of Grants of Department of Space for 1994-95" (PDF). p. 51. Archived (PDF) from the original on 13 October 2021. Retrieved 30 May 2022.
  258. "Detailed Demands of Grants of Department of Space for 1995-96" (PDF). p. 65. Archived (PDF) from the original on 13 October 2021. Retrieved 30 May 2022.
  259. "Detailed Demands of Grants of Department of Space for 1996-97" (PDF). p. 38. Archived (PDF) from the original on 13 October 2021. Retrieved 30 May 2022.
  260. "2003-2004 Expenditure Budget Vol. I: Trends in Expenditure" (PDF). Archived (PDF) from the original on 20 May 2022. Retrieved 30 May 2022.
  261. "Detailed Demands of Grants of Department of Space for 1997-98" (PDF). p. 38. Archived (PDF) from the original on 13 October 2021. Retrieved 30 May 2022.
  262. "Detailed Demands of Grants of Department of Space for 1998-99" (PDF). p. 38. Archived (PDF) from the original on 13 October 2021. Retrieved 30 May 2022.
  263. "Detailed Demands of Grants of Department of Space for 1999-2000" (PDF). p. 40. Archived (PDF) from the original on 13 October 2021. Retrieved 30 May 2022.
  264. "Detailed Demands of Grants of Department of Space for 2000-2001" (PDF). p. 41. Archived (PDF) from the original on 13 October 2021. Retrieved 30 May 2022.
  265. "Expenditure Budget Vol. I, 2007-2008: Trends in Expenditure" (PDF). Archived (PDF) from the original on 30 May 2022. Retrieved 30 May 2022.
  266. "Detailed Demands of Grants of Department of Space for 2001-2002" (PDF). p. 41. Archived (PDF) from the original on 13 October 2021. Retrieved 30 May 2022.
  267. "Detailed Demands of Grants of Department of Space for 2002-2003" (PDF). p. 47. Archived (PDF) from the original on 13 October 2021. Retrieved 30 May 2022.
  268. "Detailed Demands of Grants of Department of Space for 2003-2004" (PDF). p. 41. Archived (PDF) from the original on 13 October 2021. Retrieved 30 May 2022.
  269. "Expenditure Budget Vol. I, 2010-2011: Trends in Expenditure" (PDF). Archived (PDF) from the original on 20 May 2022. Retrieved 30 May 2022.
  270. "Detailed Demands of Grants of Department of Space for 2004-2005" (PDF). p. 42. Archived (PDF) from the original on 13 October 2021. Retrieved 30 May 2022.
  271. "Detailed Demands of Grants of Department of Space for 2005-2006" (PDF). p. 48. Archived (PDF) from the original on 13 October 2021. Retrieved 30 May 2022.
  272. "Detailed Demands of Grants of Department of Space for 2006-2007" (PDF). p. 48. Archived (PDF) from the original on 13 October 2021. Retrieved 30 May 2022.
  273. "Detailed Demands of Grants of Department of Space for 2007-2008" (PDF). p. 53. Archived (PDF) from the original on 13 October 2021. Retrieved 30 May 2022.
  274. "Detailed Demands of Grants of Department of Space for 2008-2009" (PDF). p. 50. Archived (PDF) from the original on 13 October 2021. Retrieved 30 May 2022.
  275. "Expenditure Budget Vol. I, 2015-2016: Trends in Expenditure" (PDF). Archived (PDF) from the original on 20 May 2022. Retrieved 30 May 2022.
  276. "Detailed Demands of Grants of Department of Space for 2009-2010" (PDF). p. 52. Archived (PDF) from the original on 13 October 2021. Retrieved 30 May 2022.
  277. "Detailed Demands of Grants of Department of Space for 2010-2011" (PDF). p. 46. Archived (PDF) from the original on 13 October 2021. Retrieved 30 May 2022.
  278. "Detailed Demands of Grants of Department of Space for 2011-2012" (PDF). p. 46. Archived (PDF) from the original on 13 October 2021. Retrieved 30 May 2022.
  279. "Detailed Demands of Grants of Department of Space for 2012-2013" (PDF). p. 43. Archived (PDF) from the original on 30 May 2022. Retrieved 30 May 2022.
  280. "Detailed Demands of Grants of Department of Space for 2013-2014" (PDF). p. 49. Archived (PDF) from the original on 13 October 2021. Retrieved 30 May 2022.
  281. "Detailed Demands of Grants of Department of Space for 2014-2015" (PDF). p. 53. Archived (PDF) from the original on 13 October 2021. Retrieved 30 May 2022.
  282. "Detailed Demands of Grants of Department of Space for 2015-2016" (PDF). p. 58. Archived (PDF) from the original on 13 October 2021. Retrieved 30 May 2022.
  283. "Detailed Demands of Grants of Department of Space for 2016-2017" (PDF). p. 74. Archived (PDF) from the original on 13 October 2021. Retrieved 30 May 2022.
  284. "Budget at a Glance 2016-2017" (PDF). p. 3. Archived (PDF) from the original on 20 May 2022. Retrieved 30 May 2022.
  285. "Detailed Demands of Grants of Department of Space for 2017-2018" (PDF). p. 83. Archived (PDF) from the original on 13 October 2021. Retrieved 30 May 2022.
  286. "Budget at a Glance 2017-2018" (PDF). p. 3. Archived (PDF) from the original on 9 March 2022. Retrieved 30 May 2022.
  287. "Detailed Demands of Grants of Department of Space for 2018-2019" (PDF). p. 76. Archived (PDF) from the original on 13 October 2021. Retrieved 30 May 2022.
  288. "Budget at a Glance 2018-2019" (PDF). p. 3. Archived (PDF) from the original on 20 May 2022. Retrieved 30 May 2022.
  289. "Detailed Demands of Grants of Department of Space for 2019-2020" (PDF). p. 91. Archived (PDF) from the original on 13 October 2021. Retrieved 30 May 2022.
  290. "Budget at a Glance 2019-2020" (PDF). p. 3. Archived (PDF) from the original on 20 May 2022. Retrieved 30 May 2022.
  291. "Detailed Demands of Grants of Department of Space for 2020-2021" (PDF). p. 93. Archived (PDF) from the original on 13 October 2021. Retrieved 30 May 2022.
  292. "Budget at a Glance 2020-2021" (PDF). p. 3. Archived (PDF) from the original on 20 May 2022. Retrieved 30 May 2022.
  293. "Detailed Demands of Grants of Department of Space for 2021-22" (PDF). p. 94. Archived (PDF) from the original on 16 July 2021. Retrieved 30 May 2022.
  294. "Budget at a Glance 2021-2022" (PDF). p. 3. Archived (PDF) from the original on 1 April 2022. Retrieved 30 May 2022.
  295. "Detailed Demands of Grants of Department of Space for 2022-23" (PDF). p. 97. Archived (PDF) from the original on 24 March 2022. Retrieved 30 May 2022.
  296. "Budget at a Glance 2022-2023" (PDF). p. 5. Archived (PDF) from the original on 31 March 2022. Retrieved 30 May 2022.
  297. Thakur, Pradeep (8 February 2011). "Another spectrum scam hits govt, this time from ISRO". The Times of India. New Delhi. Archived from the original on 27 July 2019. Retrieved 23 January 2018.
  298. "Behind the S-band spectrum scandal". The Hindu. 28 September 2011. Archived from the original on 19 February 2014. Retrieved 6 February 2015.
  299. Bureau, ET (20 January 2022). "Devas Multimedia-Antrix deal: A timeline of ongoing tussle". The Economic Times. Retrieved 22 July 2022.
  300. "antrix-devas-news-lalit-shastri". Newsroom24x7. 20 March 2015. Archived from the original on 19 May 2015. Retrieved 24 May 2016.
  301. Jethmalani, Ram (22 August 2013). "Antrix Devas and the second generation scam". The New Indian Express. New Delhi. Archived from the original on 6 February 2015. Retrieved 6 February 2015.
  302. "CBI registers case in the huge Antrix-Devas scam". Newsroom24x7.com. Archived from the original on 18 May 2015. Retrieved 16 May 2015.
  303. "Antrix-Devas Agreement, national security, and CBI". Newsroom24x7. 20 March 2015. Archived from the original on 3 May 2016. Retrieved 24 May 2016.
  304. "ISRO's Antrix to pay Rs 44.32 billion damages to Devas for unlawfully cancelling contract". The Economic Times. 30 September 2015. Archived from the original on 5 November 2015. Retrieved 15 December 2015.
  305. Mathur, Aneesha (10 October 2015). "Antrix opposes Devas plea over tribunal award in HC". The Indian Express. New Delhi. Archived from the original on 22 December 2015. Retrieved 23 January 2018.

^'Additional Project Director' "Abhijeet Meshram" Saying About Chandrayan-2 at SHIKHAR DHAWAN SPACE STATION on (18 May 2019)

Bibliography

Further reading

  • The Economics of India's Space Programme, by U. Sankar, Oxford University Press, New Delhi, 2007, ISBN 978-0-19-568345-5
  • The Indian Space Programme, by Gurbir Singh, Astrotalkuk Publications, ISBN 978-0956933737
  • Reach For the Stars: The Evolution of India's Rocket Programme, by Gopal Raj, ISBN 978-0670899500
  • From Fishing Hamlet to Red Planet: India's Space Journey, by ISRO, ISBN 978-9351776895
  • Brief History of Rocketry in ISRO, by P V Manoranjan Rao and P Radhakrishnan, ISBN 978-8173717642
  • India's Rise as a Space Power, by U R Rao, ISBN 978-9382993483
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.