Ballistic missile

A ballistic missile is a type of missile which uses projectile motion to deliver warheads on a target. These weapons are guided only during relatively brief periods—most of the flight is unpowered. Short-range ballistic missiles stay within the Earth's atmosphere, while intercontinental ballistic missiles (ICBMs) are launched on a sub-orbital flight.

Minuteman-III MIRV launch sequence:
  • 1. The missile launches out of its silo by firing its 1st-stage boost motor (A).
  • 2. About 60 seconds after launch, the 1st-stage drops off and the 2nd-stage motor (B) ignites. The missile shroud (E) is ejected.
  • 3. About 120 seconds after launch, the 3rd-stage motor (C) ignites and separates from the 2nd stage.
  • 4. About 180 seconds after launch, 3rd-stage thrust terminates and the post-boost vehicle (D) separates from the rocket.
  • 5. The post-boost vehicle maneuvers itself and prepares for re-entry vehicle (RV) deployment.
  • 6. The RVs, as well as decoys and chaff, are deployed.
  • 7. The RVs (now armed) and chaff re-enter the atmosphere at high speeds.
  • 8. The nuclear warheads detonate.

These weapons are in a distinct category from cruise missiles, which are aerodynamically guided in powered flight. Unlike cruise missiles, which are restricted to the atmosphere, it is advantageous for ballistic missiles to avoid the denser parts of the atmosphere and they may travel above the atmosphere into outer space.

History

Replica V-2

The earliest form of ballistic missiles dates from the 13th century with its use derived from the history of rockets. In the 14th century, the Ming Chinese navy used an early form of a ballistic missile weapon called the Huolongchushui in naval battles against enemy ships.[1] A modern pioneer ballistic missile was the A-4,[2] commonly known as the V-2 developed by Nazi Germany in the 1930s and 1940s under the direction of Wernher von Braun. The first successful launch of a V-2 was on October 3, 1942, and it began operation on September 6, 1944, against Paris, followed by an attack on London two days later. By the end of World War II in Europe in May 1945, more than 3,000 V-2s had been launched.[3]

The R-7 Semyorka was the first intercontinental ballistic missile.

In 2010, the U.S. and Russian governments signed a treaty to reduce their inventory of intercontinental ballistic missiles (ICBMs) over a seven-year period (to 2017) to 1550 units each.[4]

Side view of Minuteman-III ICBM

Flight

An intercontinental ballistic missile trajectory consists of three parts: the powered flight portion; the free-flight portion, which constitutes most of the flight time; and the re-entry phase, where the missile re-enters the Earth's atmosphere. The flight phases for shorter-range ballistic missiles are essentially the first two phases of the ICBM, as some ballistic categories do not leave the atmosphere.[5]

Ballistic missiles can be launched from fixed sites or mobile launchers, including vehicles (e.g., transporter erector launchers (TELs)), aircraft, ships, and submarines. The powered flight portion can last from a few tenths of seconds to several minutes and can consist of multiple rocket stages.[5]

When the fuel is exhausted, no more thrust is provided and the missile enters free flight. In order to cover large distances, ballistic missiles are usually launched into a high sub-orbital spaceflight; for intercontinental missiles, the highest altitude (apogee) reached during free-flight is about 4,500 kilometers (2,800 mi).[6]

The re-entry stage begins at an altitude where atmospheric drag plays a significant part in missile trajectory, and lasts until missile impact.[5]

Re-entry vehicles re-enter the Earth's atmosphere at very high velocities, on the order of 6–8 kilometers per second (22,000–29,000 km/h; 13,000–18,000 mph) at ICBM ranges.[7]

Types

Trident II SLBM launched by ballistic missile submarine

Ballistic missiles vary widely in range and use, and are often divided into categories based on range. Various schemes are used by different countries to categorize the ranges of ballistic missiles:

  • Air-launched ballistic missile (ALBM)
  • Tactical ballistic missile: Range between about 150 to 300 kilometres (93 to 186 mi)
  • Theatre ballistic missile (TBM): Range between 300 to 3,500 kilometres (190 to 2,170 mi)
    • Short-range ballistic missile (SRBM): Range between 300 to 1,000 kilometres (190 to 620 mi)
    • Medium-range ballistic missile (MRBM): Range between 1,000 to 3,500 kilometres (620 to 2,170 mi)
  • Intermediate-range ballistic missile (IRBM) or long-range ballistic missile (LRBM): Range between 3,500 to 5,500 kilometres (2,200 to 3,400 mi)
  • Intercontinental ballistic missile (ICBM): Range greater than 5,500 kilometres (3,400 mi)
  • Submarine-launched ballistic missile (SLBM): Launched from ballistic missile submarines (SSBNs)

Most current designs have intercontinental range with a notable exception of Indian operational SLBM Sagarika and K-4 as well as North Korea's currently operationally deployed KN-11[8] which might not have intercontinental range. A comparable missile would be the decommissioned China's JL-1 SLBM with a range of less than 2,500 km.

Tactical short- and medium-range missiles are often collectively referred to as tactical and theatre ballistic missiles, respectively. Long- and medium-range ballistic missiles are generally designed to deliver nuclear weapons because their payload is too limited for conventional explosives to be cost-effective in comparison to conventional bomber aircraft (though the U.S. is evaluating the idea of a conventionally armed ICBM for near-instant global air strike capability, despite the high costs).

Quasi ballistic missiles

A quasi ballistic missile (also called a semi ballistic missile) including anti-ship ballistic missiles is a category of missile that has a low trajectory and/or is largely ballistic but can perform maneuvers in flight or make unexpected changes in direction and range.[9]

At a lower trajectory than a ballistic missile, a quasi ballistic missile can maintain higher speed, thus allowing its target less time to react to the attack, at the cost of reduced range.

The Russian Iskander is a quasi ballistic missile.[10] The Russian Iskander-M cruises at hypersonic speed of 2,100–2,600 m/s (Mach 6–7) at a height of 50 km. The Iskander-M weighs 4,615 kg, carries a warhead of 710–800 kg, has a range of 480 km and achieves a CEP of 5–7 meters. During flight it can maneuver at different altitudes and trajectories to evade anti-ballistic missiles.[11][12]

List of quasi ballistic missiles

 China
  • DF-15 (active)
  • DF-21D (active)
  • DF-26 (active)
  • B-611MR (active)
  • SY-400 (active)
  • XY-9
 France
  • Hadès (retired)
 India
  • Prithvi-III (active)
  • Dhanush (active)
  • Prahaar (active)
  • Shaurya (active)
  • Pralay (under development)
 South Korea
  • Hyunmoo-1
  • Hyunmoo-2A
    • Hyunmoo-2B
    • Hyunmoo-2C
  • Hyunmoo-4
 Turkey
  • Bora (active)
 Iran
  • Fateh-110 (active)
  • Qiam 1 (active)
  • Khalij Fars (active)
  • Kheibar Shekan (active)
  • Sejjil (active)
  • Shahab (active)
  • Khorramshahr (missile) (active)
  • Emad (missile) (active)
  • Ghadr-110 (active)
  • Zolfaghar (missile) (active)
 Israel
  • EXTRA (active)
  • LORA (active)
  • Preadator Hawk (active)
 North Korea
  • KN-23 (under development)
  • KN-24 (under development)
 Pakistan
  • CM-400AKG (active)
  • Nasr (active)
  • Shaheen-III (active)
 Soviet Union\ Russia
  • R-27K (cancelled)
  • Tochka (active)
  • Oka (retired)
  • Iskander (active)
 United States
  • MGM-140B/E ATACMS (active)

Throw-weight

Throw-weight is a measure of the effective weight of ballistic missile payloads. It is measured in kilograms or tonnes. Throw-weight equals the total weight of a missile's warheads, reentry vehicles, self-contained dispensing mechanisms, penetration aids, and missile guidance systems: generally all components except for the launch rocket booster and launch fuel. Throw-weight may refer to any type of warhead, but in normal modern usage, it refers almost exclusively to nuclear or thermonuclear payloads. It was once also a consideration in the design of naval ships and the number and size of their guns.

Throw-weight was used as a criterion in classifying different types of missiles during Strategic Arms Limitation Talks between the Soviet Union and the United States.[13] The term became politically controversial during debates over the arms control accord, as critics of the treaty alleged that Soviet missiles were able to carry larger payloads and so enabled the Soviets to maintain higher throw-weight than an American force with a roughly comparable number of lower-payload missiles.[14]

The missiles with the world's heaviest payloads are the Russian SS-18 and Chinese CSS-4 and as of 2017, Russia was developing a new heavy-lift, liquid-propellant ICBM called the Sarmat.[7]

Depressed trajectory

Throw-weight is normally calculated using an optimal ballistic trajectory from one point on the surface of the Earth to another. An optimal trajectory maximizes the total payload (throw-weight) using the available impulse of the missile. By reducing the payload weight, different trajectories can be selected, which can either increase the nominal range or decrease the total time in flight.

A depressed trajectory is non-optimal, as a lower and flatter trajectory takes less time between launch and impact but has a lower throw-weight. The primary reasons to choose a depressed trajectory are to evade anti-ballistic missile systems by reducing the time available to shoot down the attacking vehicle (especially during the vulnerable burn-phase against space-based ABM systems) or a nuclear first-strike scenario.[15] An alternate, non-military purpose for a depressed trajectory is in conjunction with the space plane concept with use of air-breathing engines, which requires the ballistic missile to remain low enough inside the atmosphere for air-breathing engines to function.

Combat use

The following ballistic missiles have been used in combat:

See also


Notes

  1. Needham, Volume 5, Part 7, 508-510.
  2. Zaloga, Steven (2003). V-2 Ballistic Missile 1942–52. Reading: Osprey Publishing. p. 3. ISBN 978-1-84176-541-9.
  3. Clayton K. S. Chun (2006). Thunder Over the Horizon: From V-2 Rockets to Ballistic Missiles. Greenwood Publishing Group. p. 54.
  4. U.S. Department of State (8 April 2010). "Treaty between the United States of America and the Russian Federation on Measures for the Further Reduction and Limitation of Strategic Offensive Arms". Retrieved 25 November 2018.
  5. McFadden, Christopher (4 December 2017). "What is an intercontinental ballistic missile and how does it work?".
  6. "North Korea launches 'highest ever' ballistic missile". BBC. 28 November 2017.
  7. "Ballistic and Cruise Missile Threat". Defense Intelligence Ballistic Missile Analysis Committee. June 2017.
  8. (2nd LD) N.K. leader calls SLBM launch success, boasts of nuke attack capacity—Yonhap, 25 Aug 2016 08:17am
  9. "Why Pralay quasi-ballistic missile, tested by DRDO today, will be a 'game-changer' for Army". ThePrint. 2021-12-22. Retrieved 2022-06-21.
  10. "Latest News". Business Standard India via Business Standard.
  11. "MilitaryRussia.Ru — отечественная военная техника (после 1945г.) | Статьи". military.tomsk.ru. Archived from the original on 2017-10-06. Retrieved 2010-08-21.
  12. "SS-26 Stone Iskander 9M72 9P78EBallistic missile system". Archived from the original on 2010-07-25.
  13. James John Tritten, Throw-Weight and Arms Control Archived 2007-11-23 at the Wayback Machine, Air University Review, Nov-Dec 1982.
  14. New York Times, What Is Throw-Weight?, July 15, 1991.
  15. Science & Global Security, 1992, Volume 3, pp.101-159 Depressed Trajectory SLBMs: A Technical Evaluation and Arms Control Possibilities
  16. "The National Interest: Blog".
  17. "Two missiles target Ethiopian airports as Tigray conflict widens". 14 November 2020.
  18. "Video Points to Azerbaijan's First Use of Israeli-Made Ballistic Missile Against Armenia". 2 October 2020.
  19. "A peek inside Houthi Rebel's recent missile strikes in Saudi Arabia | FDD's Long War Journal". 28 March 2018.

References

  • Needham, Joseph (1986). Science and Civilization in China: Volume 5, Chemistry and Chemical Technology, Part 7, Military Technology; the Gunpowder Epic. Taipei: Caves Books Ltd.

Further reading

  • Futter, Andrew (2013). Ballistic Missile Defence and US National Security Policy: Normalisation and Acceptance after the Cold War. Routledge. ISBN 978-0415817325.
  • Neufeld, Jacob (1990). The Development of Ballistic Missiles in the United States Air Force, 1945-1960. Office of Air Force History, U.S. Air Force. ISBN 0912799625.
  • Swaine, Michael D.; Swanger, Rachel M.; Kawakami, Takashi (2001). Japan and Ballistic Missile Defense. Rand. ISBN 0833030205.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.