Espacio sobrio
En matemáticas, particularmente en topología, un espacio topológico X es sobrio si para todo cerrado C de X que no contenga estrictamente a un cerrado no vacío más pequeño, existe un único punto x en X tal que C es la clausura del singulete {x}.
Cualquier espacio de Hausdorff T2 es sobrio, y todos los espacios sobrios son Kolmogorov T0. La sobriedad no es comparable a T1.
La sobriedad de X es precisamente la condición que fuerza a que el anillo C0 (X, R) de las funciones continuas con valores reales definidas en X determine la topología de X. La sobriedad hace del (pre)orden de especialización un orden parcial.
Véase también
Enlaces externos
Este artículo ha sido escrito por Wikipedia. El texto está disponible bajo la licencia Creative Commons - Atribución - CompartirIgual. Pueden aplicarse cláusulas adicionales a los archivos multimedia.