Cociente Hare
La cuota Hare o cociente Hare es una fórmula utilizada en sistemas de representación proporcional que representa el número de votos requeridos para obtener un escaño. Resulta de dividir el número de votos válidos de unas elecciones entre el número de escaños en juego. Se utiliza en sistemas electorales de voto único transferible o en sistemas de representación proporcional por listas electorales que utilizan el método del resto mayor.[1]
El cociente Hare/Niemeyer, o sistema de proporciones matemáticas, fue desarrollado por el matemático alemán Niemeyer y promovido para un sistema electoral por el jurista inglés Sir Thomas Hare. Se realiza mediante una fórmula modificada.
El cociente Hare es el sistema reparto de escaños más importante de Brasil, permitiendo establecer el número mínimo de escaños asignados a cada partido o coalición. Los escaños restantes se asignan según el sistema D'Hondt.[2] Este procedimiento se emplea en las elecciones para la Cámara de Federal de Diputados, Asambleas Estatales, Cámaras Municipales y del Distrito Federal.
Reparto
Si se eligen escaños para un cuerpo colegiado, y se emiten votos válidos, se establece un cociente el cual servirá para repartir los votos. Este cociente se calcula mediante la fórmula:
con aproximado al entero más próximo inferior.
Si la -ésima lista de listas inscritas obtiene votos, esta lista tendrá escaños por cociente y votos por residuo mediante la fórmula: .
Sea el número de escaños que no son obtenidos por cociente:
Estos escaños son repartidos entre los mayores residuos .
De esta forma, el número total de escaños del -ésimo partido será o .
Características
Habitualmente su efecto es menos favorable a los partidos mayores que el que obtienen mediante la aplicación de los sistemas de Imperiali, Droop o Faraco. Produce cocientes mayores, por lo que, salvo en casos muy especiales, habrá menos candidatos elegidos por cociente que escaños disponibles. Los escaños faltantes se suelen repartir por un sistema como el método del resto mayor.
Ejemplos
Suponiendo que se presenten siete partidos para elegir 21 escaños, los partidos reciben 1.000.000 votos repartidos así:
Partido A | 391.000 votos |
Partido B | 311.000 votos |
Partido C | 184.000 votos |
Partido D | 73.000 votos |
Partido E | 27.000 votos |
Partido F | 12.000 votos |
Partido G | 2.000 votos |
Partido | Partido A | Partido B | Partido C | Partido D | Partido E | Partido F | Partido G | Total | |
---|---|---|---|---|---|---|---|---|---|
Votos por partido | 391.000 | 311.000 | 184.000 | 73.000 | 27.000 | 12.000 | 2.000 | 1.000.000 | |
Cociente | 47.619 | ||||||||
Escaños por cociente | 8 | 6 | 3 | 1 | 0 | 0 | 0 | 18 | |
Votos por cociente | 380.952 | 285.714 | 142.857 | 47.619 | 0 | 0 | 0 | 857.142 | |
Votos de residuo | 10.048 | 25.286 | 41.143 | 25.381 | 27.000 | 12.000 | 2.000 | 142 858 | |
Escaños por residuo | +1 | +1 | +1 | +3 | |||||
Total de escaños | 8 | 6 | 4 | 2 | 1 | 0 | 0 | 21 |
Se puede, a su vez, crear un simulador propio de forma sencilla.[3]