Microscopio de sonda de barrido

Un microscopio de sonda de barrido (también llamado SPM por sus siglas en inglés Scanning Probe Microscopy) es aquel que tiene el transmisor en la parte exequimal del lente (Objetivo 4x). Este microscopio electrónico utiliza una sonda que recorre la superficie del objeto a estudiar. La rama de microscopios SPM se fundó con la invención del microscopio de efecto túnel en 1981.

Su uso en investigaciones científicas es el de regular la imagen mediante un barrido de electrones haciendo que la imagen aumente (10.000.000 nm).

Tipos de SPM

Hay gran variedad de microscopios de sonda de barrido, siendo los principales:
  • AFM, Microscopio de fuerza atómica (atomic force microscopy)[1]
    • Contact AFM
    • Non-contact AFM
    • Dynamic contact AFM
    • Tapping AFM
  • BEEM, ballistic electron emission microscopy[2]
  • CFM, chemical force microscopy
  • C-AFM, conductive atomic force microscopy[3]
  • ECSTM electrochemical scanning tunneling microscope[4]
  • EFM, electrostatic force microscopy[5]
  • FluidFM, fluidic force microscope[6][7][8][9]
  • FMM, force modulation microscopy[10]
  • FOSPM, feature-oriented scanning probe microscopy[11]
  • KPFM, kelvin probe force microscopy[12]
  • MFM, magnetic force microscopy[13]
  • MRFM, magnetic resonance force microscopy[14]
  • NSOM, Microscopio óptico de campo cercano (near-field scanning optical microscopy o SNOM, scanning near-field optical microscopy)[15]
  • PFM, Piezoresponse Force Microscopy[16]
  • PSTM, photon scanning tunneling microscopy[17]
  • PTMS, photothermal microspectroscopy/microscopy
  • SCM, scanning capacitance microscopy[18]
  • SECM, scanning electrochemical microscopy
  • SGM, scanning gate microscopy[19]
  • SHPM, scanning Hall probe microscopy[20]
  • SICM, scanning ion-conductance microscopy[21]
  • SPSM spin polarized scanning tunneling microscopy[22]
  • SSRM, scanning spreading resistance microscopy[23]
  • SThM, scanning thermal microscopy[24]
  • STM, Microscopio de efecto túnel (scanning tunneling microscopy)[25]
  • STP, scanning tunneling potentiometry[26]
  • SVM, scanning voltage microscopy[27]
  • SXSTM, synchrotron x-ray scanning tunneling microscopy[28]
  • SSET Scanning Single-Electron Transistor Microscopy[29]

De estas técnicas, AFM y STM son los más comúnmente utilizados para las mediciones de rugosidad.

Véase también

Notas

  1. Binnig, G.; C. F. Quate; Ch. Gerber (3 de marzo de 1986). «Atomic Force Microscope». Physical Review Letters 56 (9): 930-933. Bibcode:1986PhRvL..56..930B. PMID 10033323. doi:10.1103/PhysRevLett.56.930.
  2. Kaiser, W. J.; L. D. Bell (1988). «Direct investigation of subsurface interface electronic structure by ballistic-electron-emission microscopy». Physical Review Letters 60 (14): 1406-1409. Bibcode:1988PhRvL..60.1406K. PMID 10038030. doi:10.1103/PhysRevLett.60.1406.
  3. Zhang, L.; T. Sakai, N. Sakuma, T. Ono, K. Nakayama (1999). «Nanostructural conductivity and surface-potential study of low-field-emission carbon films with conductive scanning probe microscopy». Applied Physics Letters 75 (22): 3527-3529. Bibcode:1999ApPhL..75.3527Z. doi:10.1063/1.125377.
  4. Higgins, S. R.; R. J. Hamers (March 1996). «Morphology and dissolution processes of metal sulfide minerals observed with the electrochemical scanning tunneling microscope». Journal of Vacuum Science and Technology B 14 (AVS): 1360-1364. doi:10.1116/1.589098. Consultado el 5 de octubre de 2009.
  5. Weaver, J. M. R.; David W. Abraham (1991). «High resolution atomic force microscopy potentiometry». Journal of Vacuum Science and Technology B 9 (3): 1559-1561. Bibcode:1991JVSTB...9.1559W. doi:10.1116/1.585423.
  6. Meister, André; Gabi, Michael; Behr, Pascal; Studer, Philipp; Vörös, János; Niedermann, Philippe; Bitterli, Joanna; Polesel-Maris, Jérôme; Liley, Martha; Heinzelmann, Harry; Zambelli, Tomaso (2009). «FluidFM: Combining Atomic Force Microscopy and Nanofluidics in a Universal Liquid Delivery System for Single Cell Applications and Beyond». Nano Letters 9 (6): 2501-2507. Bibcode:2009NanoL...9.2501M. ISSN 1530-6984. doi:10.1021/nl901384x.
  7. http://www.fluidfm.com
  8. http://www.nanosurf.com/fluidfm
  9. http://www.cytosurge.com
  10. Fritz, M.; M. Radmacher, N. Petersen, H. E. Gaub (May 1994). «Visualization and identification of intracellular structures by force modulation microscopy and drug induced degradation». The 1993 international conference on scanning tunneling microscopy. The 1993 international conference on scanning tunneling microscopy 12. Beijing, China: AVS. pp. 1526-1529. doi:10.1116/1.587278. Consultado el 5 de octubre de 2009.
  11. R. V. Lapshin (2011). «Feature-oriented scanning probe microscopy» (PDF). En H. S. Nalwa, ed. Encyclopedia of Nanoscience and Nanotechnology 14. USA: American Scientific Publishers. pp. 105-115. ISBN 1-58883-163-9.
  12. Nonnenmacher, M.; M. P. O'Boyle; H. K. Wickramasinghe (1991). «Kelvin probe force microscopy». Applied Physics Letters 58 (25): 2921-2923. Bibcode:1991ApPhL..58.2921N. doi:10.1063/1.105227.
  13. Hartmann, U. (1988). «Magnetic force microscopy: Some remarks from the micromagnetic point of view». Journal of Applied Physics 64 (3): 1561-1564. Bibcode:1988JAP....64.1561H. doi:10.1063/1.341836.
  14. Sidles, J. A.; J. L. Garbini, K. J. Bruland, D. Rugar, O. Züger, S. Hoen, C. S. Yannoni (1995). «Magnetic resonance force microscopy». Reviews of Modern Physics 67 (1): 249. Bibcode:1995RvMP...67..249S. doi:10.1103/RevModPhys.67.249.
  15. BETZIG, E.; J. K. TRAUTMAN, T. D. HARRIS, J. S. WEINER, R. L. KOSTELAK (22 de marzo de 1991). «Breaking the Diffraction Barrier: Optical Microscopy on a Nanometric Scale». Science 251 (5000): 1468-1470. Bibcode:1991Sci...251.1468B. PMID 17779440. doi:10.1126/science.251.5000.1468. Consultado el 5 de octubre de 2009.
  16. Roelofs, A.; U. Bottger, R. Waser, F. Schlaphof, S. Trogisch, L. M. Eng (2000). «Differentiating 180° and 90° switching of ferroelectric domains with three-dimensional piezoresponse force microscopy». Applied Physics Letters 77 (21): 3444-3446. Bibcode:2000ApPhL..77.3444R. doi:10.1063/1.1328049.
  17. Reddick, R. C.; R. J. Warmack; T. L. Ferrell (1 de enero de 1989). «New form of scanning optical microscopy». Physical Review B 39 (1): 767. Bibcode:1989PhRvB..39..767R. doi:10.1103/PhysRevB.39.767. Consultado el 5 de octubre de 2009.
  18. Matey, J. R.; J. Blanc (1985). «Scanning capacitance microscopy». Journal of Applied Physics 57 (5): 1437-1444. Bibcode:1985JAP....57.1437M. doi:10.1063/1.334506.
  19. Eriksson, M. A.; R. G. Beck, M. Topinka, J. A. Katine, R. M. Westervelt, K. L. Campman, A. C. Gossard (29 de julio de 1996). «Cryogenic scanning probe characterization of semiconductor nanostructures». Applied Physics Letters 69 (5): 671-673. Bibcode:1996ApPhL..69..671E. doi:10.1063/1.117801. Consultado el 5 de octubre de 2009.
  20. Chang, A. M.; H. D. Hallen, L. Harriott, H. F. Hess, H. L. Kao, J. Kwo, R. E. Miller, R. Wolfe, J. van der Ziel, T. Y. Chang (1992). «Scanning Hall probe microscopy». Applied Physics Letters 61 (16): 1974-1976. Bibcode:1992ApPhL..61.1974C. doi:10.1063/1.108334.
  21. Hansma, PK; B Drake, O Marti, SA Gould, CB Prater (3 de febrero de 1989). «The scanning ion-conductance microscope». Science 243 (4891): 641-643. Bibcode:1989Sci...243..641H. PMID 2464851. doi:10.1126/science.2464851. Consultado el 5 de octubre de 2009.
  22. Wiesendanger, R.; M. Bode (25 de julio de 2001). «Nano- and atomic-scale magnetism studied by spin-polarized scanning tunneling microscopy and spectroscopy». Solid State Communications 119 (4-5): 341-355. Bibcode:2001SSCom.119..341W. ISSN 0038-1098. doi:10.1016/S0038-1098(01)00103-X. Consultado el 5 de octubre de 2009.
  23. De Wolf, P.; J. Snauwaert, T. Clarysse, W. Vandervorst, L. Hellemans (1995). «Characterization of a point-contact on silicon using force microscopy-supported resistance measurements». Applied Physics Letters 66 (12): 1530-1532. Bibcode:1995ApPhL..66.1530D. doi:10.1063/1.113636.
  24. Xu, J. B.; K. Lauger, K. Dransfeld, I. H. Wilson (1994). «Thermal sensors for investigation of heat transfer in scanning probe microscopy». Review of Scientific Instruments 65 (7): 2262-2266. Bibcode:1994RScI...65.2262X. doi:10.1063/1.1145225.
  25. Binnig, G.; H. Rohrer, Ch. Gerber, E. Weibel (1982). «Tunneling through a controllable vacuum gap». Applied Physics Letters 40 (2): 178-180. Bibcode:1982ApPhL..40..178B. doi:10.1063/1.92999.
  26. Vorlesungsskript Physikalische Elektronik und Messtechnik (en alemán)
  27. Trenkler, T.; P. De Wolf, W. Vandervorst, L. Hellemans (1998). «Nanopotentiometry: Local potential measurements in complementary metal--oxide--semiconductor transistors using atomic force microscopy». Journal of Vacuum Science and Technology B 16: 367-372. Bibcode:1998JVSTB..16..367T. doi:10.1116/1.589812.
  28. Kalinin, Sergei V.; Gruverman, Alexei (Eds.), ed. (2011). «New Capabilities at the Interface of X-Rays and Scanning Tunneling Microscopy». Scanning Probe Microscopy of Functional Materials: Nanoscale Imaging and Spectroscopy (1st edición). Nueva York: Springer. pp. 405-431. ISBN 978-1-4419-6567-7. doi:10.1007/978-1-4419-7167-8_14. Archivado desde el original el 10 de mayo de 2020. Consultado el 28 de abril de 2014.
  29. Yoo, M. J.; Fulton, T. A. and Hess, H. F. and Willett, R. L. and Dunkleberger, L. N. and Chichester, R. J. and Pfeiffer, L. N. and West, K. W. (25 de abril de 1997). «Scanning Single-Electron Transistor Microscopy: Imaging Individual Charges.». Science 276 (5312): 579-582. doi:10.1126/science.276.5312.579.
Este artículo ha sido escrito por Wikipedia. El texto está disponible bajo la licencia Creative Commons - Atribución - CompartirIgual. Pueden aplicarse cláusulas adicionales a los archivos multimedia.