Nanotubo de carbono

Un nanotubo de carbono es un tubo formado por átomos de carbono con un diámetro del orden de nanómetros (nanoescala). Es uno de los alótropos del carbono.

Imagen de microscopía de efecto túnel de un nanotubo de carbono de pared simple
Nanotubos de carbono de pared simple en zigzag

Los nanotubos de carbono de pared simple tienen diámetros de entre 0,5 y 2,0 nanómetros, unas 100 000 veces más pequeños que el ancho de un cabello humano. Se pueden visualizar como recortes de una hoja de grafeno bidimensional enrollados para formar un cilindro hueco.

Los nanotubos de carbono de pared múltiple consisten en nanotubos de carbono de pared simple anidados uno dentro del otro. Esta denominación se puede usar para referirse a los nanotubos de carbono de paredes dobles y triples.

Los nanotubos de carbono pueden exhibir propiedades notables, como una resistencia a la tracción y una conductividad térmica excepcionales,[1][2] debidas a su nanoestructura y a la fuerza del enlace entre los átomos de carbono. Algunas estructuras de nanotubos de carbono exhiben una alta conductividad eléctrica, mientras que otras son semiconductoras. Además, pueden modificarse químicamente.[3] Estas propiedades son de interés en muchas áreas de la tecnología, como la electrónica, la óptica, los materiales compuestos (que reemplazan o complementan las fibras de carbono), la nanotecnología y otras aplicaciones en la ciencia de materiales.

En 1993, Iijima e Ichihashi en NEC y Bethune et al. en IBM descubrieron de forma independiente que la covaporización de carbono y metales de transición como el hierro y el cobalto podía catalizar específicamente la formación de nanotubos de carbono de pared simple. Este descubrimiento dio lugar a investigaciones que lograron aumentar considerablemente la eficiencia de la técnica de producción catalítica, así como a una explosión de estudios para caracterizar y encontrar aplicaciones para esta forma de carbono.

Nomenclatura

No hay consenso generalizado en la literatura científica para la denominación de las distintas variedades de nanotubos de carbono. En las publicaciones en inglés, las moléculas se designan a menudo por sus siglas: así, los nanotubos de carbono en general se denominan CNT (carbon nano-tubes); los nanotubos de pared simple, se llaman SWCNT (simple wall/simple walled carbon nano-tubes) o SWNT —omitiendo la C de carbon— y los de pared múltiple se abrevian como MWNT o MWCNT; en obras en español, se pueden encontrar las siglas NTC ('nanotubos de carbono'), NTCPM ('nanotubos de carbono de pared múltiple') y NTCPS ('nanotubos de carbono de pared simple'). La Organización Internacional de Normalización utiliza «paredes simples» o «paredes múltiples» en sus documentos.

Historia

En 2006, Marc Monthioux y Vladimir Kuznetsov publicaron en un editorial de la revista Carbon la historia del descubrimiento de los nanotubos de carbono.[4] La identidad de los descubridores es objeto de cierta controversia.[5] Un gran porcentaje de la literatura académica y popular atribuye el descubrimiento de tubos huecos de tamaño nanométrico compuestos de carbono grafítico a Sumio Iijima, un empleado de NEC, en 1991. Iijima publicó un artículo que tuvo mucho impacto e impulsó la investigación las aplicaciones de los nanotubos de carbono. Sin embargo, las primeras observaciones de los nanotubos de carbono datan de mucho antes:[5] En 1952, Radushkevich y Lukyanovich publicaron imágenes claras de tubos de carbono de 50 nanómetros de diámetro en la revista Journal of Physical Chemistry Of Russia. Este artículo pasó desapercibido en gran medida, por publicarse en ruso y por el acceso limitado de los científicos occidentales a la prensa soviética durante la Guerra Fría. Monthioux y Kuznetsov mencionaron en su editorial:[4]

The fact is, Radushkevich and Lukyanovich [...] should be credited for the discovery that carbon filaments could be hollow and have a nanometre-size diameter, that is to say for the discovery of carbon nanotubes.

En 1976, Morinobu Endo del CNRS sintetizó mediante una técnica de crecimiento en fase de vapor tubos huecos de láminas de grafito enrolladas. Los primeros especímenes observados se conocerían más tarde como nanotubos de carbono de pared simple o SWNT. Endo, en su estudio inicial de las fibras de carbono, también observó un tubo hueco, extendido linealmente con caras paralelas de capas de carbono cerca del núcleo de la fibra.[6] Esta parece ser la primera observación de nanotubos de carbono de paredes múltiples o MWCNT.[7] Los nanotubos de carbono de paredes múltiples producidos en masa hoy se obtienen mediante un método con similitudes al desarrollado por Endo,[7] denominado de hecho el «Endo-proceso», por reconocimiento a sus primeros trabajos y patentes.[7] En 1979, John Abrahamson presentó un documento en la 14.ª Conferencia Bienal de Carbono en la Universidad Estatal de Pensilvania que describía los nanotubos de carbono como fibras de carbono producidas en ánodos de carbono durante una descarga de arco. Abrahamson caracterizó estas fibras y propuso una hipótesis para su crecimiento en atmósfera de nitrógeno a bajas presiones.[8]

En 1981, un grupo de científicos soviéticos publicó los resultados de la caracterización química y estructural de nanopartículas de carbono producidas por una desproporción termocatalítica de monóxido de carbono. Usando imágenes TEM y patrones XRD, los autores sugirieron que sus «cristales tubulares multicapa de carbono» se formaban a partir de capas de grafeno enrolladas en cilindros y que las redes hexagonales de grafeno pueden adoptar varias configuraciones; ebtre ellas una conformación circular (nanotubo de sillón) y una disposición helicoidal en espiral (tubo quiral).[9] En 1987, Howard G. Tennent, de Hyperion Catalysis, obtuvo una patente estadounidense para la producción de «fibrillas de carbono discretas cilíndricas» con un diámetro fijo entre aproximadamente 3,5 y 70 nanómetros, una longitud superior en dos órdenes de magnitud al diámetro, y una región exterior compuesta de múltiples capas esencialmente continuas de átomos de carbono ordenados y un núcleo interior diferenciado.

El descubrimiento de Iijima en 1991 de nanotubos de carbono de paredes múltiples en el material insoluble resultado de quemar varillas de grafito con un arco eléctrico generó un intenso interés entre la comunidad científica, al igual que la predicción independiente de Mintmire, Dunlap y White de que si se pudieran hacer nanotubos de carbono de pared simple, exhibirían propiedades conductoras notables. La investigación de nanotubos se aceleró enormemente tras los descubrimientos de Iijima e Ichihashi en NEC y Bethune et al. en IBM de métodos para producir nanotubos de carbono de pared simple mediante la adición de catalizadores de metales de transición al carbono en una descarga de arco. Tess y sus colaboradores refinaron este método catalítico al vaporizar la combinación de carbono/metal de transición en un horno de alta temperatura, lo que mejoró enormemente el rendimiento y la pureza de los nanotubos y los consiguientes experimentos de caracterización y aplicación. La técnica de descarga de arco, conocida por producir moléculas de buckminsterfullereno en cantidades suficientes para explorar sus propiedades,[10] desempeñó por lo tanto un papel importante en los descubrimientos de nanotubos de paredes múltiples y simples y extendió la serie de descubrimientos fortuitos relacionados con los fullerenos.

En 2020, la excavación arqueológica de Keezhadi en Tamil Nadu, India, desveló cerámicas de unos 2500 años de antigüedad cuyos revestimientos parecen contener nanotubos de carbono. Las sólidas propiedades mecánicas de los nanotubos podrían haber contribuido a la conservación de los recubrimientos durante tantos años.[11]

Estructura de los nanotubos de pared simple

Representación de una sección «desenrollada» de un nanotubo de carbono superpuesta sobre una hoja de grafeno (fondo tenue). La flecha señala el punto A2 donde el átomo A1 del borde de la sección encajaría en el borde opuesto al formar un cilindro.

La estructura de un nanotubo de carbono ideal (infinitamente largo) de pared simple es la de una red hexagonal regular dispuesta sobre una superficie cilíndrica infinita, cuyos vértices son las posiciones de los átomos de carbono. Dado que la longitud de los enlaces carbono-carbono es más o menos fija, el diámetro del cilindro y las posiciones de los átomos sobre él no son arbitrarios, sino que están restringidos a ciertos valores.[12]

Los vectores base y de la subred relevante, los pares (,) que definen estructuras de nanotubos de carbonos con enlaces en la misma orientación (puntos rojos) y los pares que definen los enantiómeros con los enlaces en la orientación opuesta.

Para caracterizar la estructura de los nanotubos, se define un traza en zigzag en una red hexagonal similar a la del grafeno como un camino que gira 60 grados, alternando a la izquierda y a la derecha, después de atravesar cada enlace. Por convención, se denomina «camino de sillón» al que describe dos giros a la izquierda seguidos de dos giros a la derecha cada cuatro pasos. En algunos nanotubos de carbono, se puede trazar un camino cerrado en zigzag que rodee el tubo, y se clasifica al tubo como de tipo o configuración en zigzag, o simplemente como un «nanotubo en zigzag». Si, en cambio, la traza alrededor del tubo es camino de sillón cerrado, se dice que es del tipo sillón o un «nanotubo de sillón». Los nanotubos infinitos de tipo zigzag o sillón consisten enteramente en caminos cerrados en zigzag o sillón, conectados entre sí.

Estructura de los nanotubos de carbono
Nanotubo en configuración de zigzag
Nanotubo en configuración de sillón

Las configuraciones en zigzag y de sillón no son las únicas conformaciones que puede adoptar un nanotubo de pared simple; la estructura de un tubo infinitamente largo, se puede representar como secciones imaginarias formadas mediante un corte paralelo a su eje que atraviesa un átomo A; las secciones se superponen sobre la estructura formada por una hoja plana grafeno de modo que los átomos y enlaces coincidan. Las dos mitades del átomo A se ubican en los bordes opuestos de la tira, sobre los átomos A1 y A2 del grafeno. La línea de A1 a A2 corresponde a la circunferencia del cilindro que atraviesa el átomo A, y es perpendicular a los bordes del corte. En la red de grafeno, los átomos se pueden dividir en dos clases, dependiendo de las direcciones de sus tres enlaces. En la mitad de los átomos, sus tres enlaces están orientados de la misma manera, mientras que en la otra mitad los enlaces están girados 180 grados. Los átomos A1 y A2, que corresponden al mismo átomo A en el cilindro, deben ser de la misma clase. De ello se deduce que la circunferencia del tubo y el ángulo de la sección dependen de las longitudes y direcciones de las líneas que conectan pares de átomos de grafeno de la misma clase. Sean y dos vectores linealmente independientes que conectan el átomo de grafeno A1 con sus dos átomos más cercanos con las mismas direcciones de enlace. Es decir, si se nombre a los carbonos dispuestos consecutivamente alrededor de una celda de grafeno como C1 - C6, entonces es el vector entre C1 y C3 y el vector entre C1 y C5. Entonces, para cualquier otro átomo A2 con la misma clase que A1, el vector de A1 a A2 se puede escribir como una combinación lineal , donde y son números enteros. Y, a la inversa, cada par de números enteros (,) define una posible posición de A2.[12]

Dados y , se puede invertir la operación teórica y dibujar el vector en la red de grafeno, cortar una tira a lo largo de las líneas perpendiculares a a través de sus extremos A1 y A2, y enrollar la tira como un cilindro que junte los dos puntos. Si esta construcción se aplica a un par (k ,0), el resultado es un nanotubo en zigzag, con caminos cerrados en zigzag de 2 k átomos. Si se aplica a un par ( k, k ), se obtiene un tubo de sillón, con caminos de sillón cerrados de 4 k átomos.

Tipos

La estructura del nanotubo no cambia si la tira se gira 60 grados en el sentido de las agujas del reloj alrededor de A1 antes de aplicar la reconstrucción hipotética descrita anteriormente. Tal rotación cambia el par (,) al par (,). De ello se deduce que muchas de las posibles posiciones de A2 con respecto a A1, es decir, muchos pares (,), corresponden a la misma disposición de átomos en el nanotubo. Ese es el caso, por ejemplo, de los seis pares (1,2), (-2,3), (-3,1), (-1,-2), (2,-3) y (3 ,-1). En particular, los pares ( k ,0) y (0, k ) describen la misma geometría del nanotubo. Esta redundancia se puede evitar considerando sólo pares (,) tales que 0 y 0; es decir, donde la dirección del vector se encuentre entre las de (inclusive) y (exclusive). Se puede verificar que todo nanotubo tiene exactamente un par (,) que cumple esas condiciones, al que se denomina «tipo de tubo».

Dos nanotubos pertenecen al mismo tipo si, y solo si, coincididen exactamente con el otro trans una rotación y traslación. En lugar del tipo (,), la estructura de un nanotubo de carbono se puede especificar con la longitud del vector (es decir, la circunferencia del nanotubo) y el ángulo entre las direcciones y , comprendido entre 0 (inclusive) y 60 grados (exclusive) en el sentido de las agujas del reloj. Si el diagrama se dibuja con horizontal, define la inclinación de la tira con respecto de la vertical.

Diagramas de nanotubos desenrollados
Nanotubo de tipo (3,1)
Nanotubo de tipo (1,3), imagen especular del tipo (3,1)
Nanotubo de tipo (2,2), el tipo de sillón más estrecho
Nanotubo de tipo (3,0), el tipo de zigzag más estrecho

Quiralidad y simetría especular

Un nanotubo es quiral si es de tipo (,) con y ; su enantiómero (imagen especular) es del tipo (,). Los únicos tipos de nanotubos que son aquirales son los tubos de configuración en zigzag (k,0) y los tubos de configuración de sillón (k,k). Puesto que los enantiómeros tienen la misma estructura, se pueden considerar solo los tipos (,) con y . El ángulo entre y , que puede adoptar valores entre 0 y 30 grados, se denomina «ángulo quiral» del nanotubo.

Circunferencia y diámetro

A partir de y se puede calcular la circunferencia , que es la longitud del vector :

(en picómetros)

El diámetro del tubo es :

(en picómetros)

Estas fórmulas son solo aproximaciones, especialmente para y pequeños donde los enlaces están tensos; tampoco tienen en cuenta el espesor de la pared. El ángulo entre y y la circunferencia están relacionados con los índices y por:

donde es el ángulo en el sentido de las agujas del reloj entre la horizontal y el vector de coordenadas . A su vez, dados y , se puede obtener el tipo mediante las fórmulas:

que deben dar como resultado números enteros.

Límites físicos

Diámetro

Tipos de tubos degenerados (demasiado estrechos)
Tubo en zigzag (1,0)
Tubo en zigzag (2,0)
Tubo en sillón (1,1)
Tubo quiral (2,1)

Si los índices y tienen valores extremadamente bajos, la estructura de la molécula no es tubular y en varios casos ni siquiera es estable. Por ejemplo, la estructura definida por el par (1,0), del tipo zigzag, es simplemente una cadena de carbonos; tal molécula existe en realidad: se denomina carbino y comparte algunas propiedades con los nanotubos —como la hibridación orbital y una alta resistencia a la tracción, entre otras—, pero no tiene un espacio hueco en su interior y es posible que no se pueda sintetizar como una fase condensada. El par (2,0) produciría teóricamente una cadena de cuatro anillos fusionados; y (1,1), del tipo de sillón consistiría en una cadena de cuatro anillos biconectados. Estas estructuras no se han observado experimentalmente.

El nanotubo de carbono más delgado observado es la estructura de sillón con tipo (2,2), que tiene un diámetro de 0.3 nm. Este nanotubo se cultivó dentro de un nanotubo de carbono de paredes múltiples. La asignación del tipo de nanotubo se realizó mediante una combinación de métodos de microscopía electrónica de transmisión de alta resolución (HRTEM), espectroscopía Raman y teoría del funcional de la densidad (DFT).[13]

El nanotubo de carbono de pared simple más delgado aislado como una molécula independiente tiene aproximadamente 0,43 nm de diámetro.[14] Se ha sugerido que puede ser de tipo (5,1) o (4,2).[15] Nanotubos de carbono de tipos (3,3), (4,3) y (5,1), con diámetros de aproximadamente 0,4 nm, se identificaron sin ambigüedades utilizando microscopía electrónica de transmisión de alta resolución.[16]

Longitud

cicloparafenileno

Los nanotubos de carbono más largos observados a fecha de 2013 tenían una longitud de unos 0,5 metros. Estos nanotubos se cultivaron en sustratos de silicio utilizando un método mejorado de deposición química de vapor (CVD) y forman matrices eléctricamente uniformes de nanotubos de carbono de pared simple.

Se considera que el nanotubo de carbono más corto es el compuesto orgánico cicloparafenileno, sintetizado en 2008 por Ramesh Jasti.[17] Desde entonces, se han sintetizado otras moléculas pequeñas formadas por nanotubos de carbono.[18]

Densidad

Los nanotubos de densidad más alta se obtuvieron en 2013, por cultivo sobre una superficie de cobre recubierta de titanio recubierta con los cocatalizadores cobalto y molibdeno a temperaturas inferiores a las típicas de 450 °C estos tubos alcanzaron una longitud media de 380 nm y una densidad de 1,6 g cm −3. El material exhibió conductividad óhmica, con una resistencia mínima de ~22 kΩ.[19] [20]

Morfología

Nanotubos de pared múltiple

Nanotubo de sillón de pared triple

Los nanotubos de pared múltiple consisten en varios tubos de grafeno concéntricos. La distancia entre capas en tubos de pared múltiple es más o menos la distancia entre los capas de grafeno en el grafito, aproximadamente 3.4 Å. Los nanotubos de pared múltiple pueden adoptar dos estructuras diferentes, characterizadas por sendos modelos. El modelo de «rollo» describe una capa simple enrollada sobre sí misma. En el modelo «matrioshka», el más común, las capas de grafeno se disponen en cilindros concéntricos; por ejemplo, un nanotubo de pared simple (0,8) dentro de un nanotubo de mayor tamaño (0,17). Los tubos componentes pueden ser metálicos o superconductores. Debido a cuestiones de probabilidad estadística y restricciones en el diámetro de los tubos concéntricos, la estructura completa en un metal con una banda prohibida igual a cero.[21]

Los nanotubos de carbono de pared doble son especialmente interesantes, porque su morfología y propiedades son similares a las de los nanotubos de pared simple, pero son más resistentes a los ataques químicos;[22] esta propiedad es importante para añadir grupos funcionales en la superficie de los nanotubos para dotarlos de diferentes propiedades. En los tubos de pared simple, este proceso destruye enlaces dobles, deja «agujeros» en el nanotubo y provoca modificaciones indeseadas de sus propiedades eléctricas y mecánicas. En los nanotobos de pared doble, solo la capa externa se ve afectada. La síntesis a gran escala (gramos) de nanotubos de pared doble mediante la técnica CCVD se introdujo en p 2003 a partir de la reducción selectiva de soluciones de óxido en metano e hidrógeno.[23]

La capacidad de movimiento telescópico de las capas internas de los nanotubos de pared múltiple,[24] junto con sus propiedades mecánicas únicas,[25] podrían propiciar su uso como brazos móviles en dispositivos nanomecánicos. La fuerza de retracción que se produce en el movimiento telescópico es causada por la interacción de Lennard-Jones entre las paredes del nanotubo, y su valor es de aproximadamente 1,5 nN.[26]

Uniones y entrecruzamientos

Imagen de microscopio electrónico de transmisión de una unión de nanotubos de carbono

Las uniones entre dos o más nanotubos han sido objeto de discusiones teóricas,[27][28] y se observan con bastante frecuencia en muestras preparadas por descarga de arco así como por deposición química de vapor. Lambin et al. analizaron las propiedades electrónicas teóricas de tales uniones y señalaron que una conexión entre un tubo metálico y uno semiconductor representaría una heterounión a nanoescala, que podría fromar parte de un circuito electrónico basado en nanotubos.[29]

Las uniones entre nanotubos y grafeno se han estudiado tanto teóricamente[30] como experimentalmente,[31] y forman la base del grafeno en pilares, en el que las láminas de grafeno paralelas están separadas por nanotubos cortos.[32] El grafeno en pilares representa una clase de arquitecturas tridimensionales de nanotubos de carbono.

Estructuras tridimensionales de carbono

Recientemente, varios estudios han destacado la posibilidad de utilizar nanotubos de carbono como bloques de construcción para dispositivos macroscópicos (mayores de 100 nm) tridimensionales de carbono. Lalwani et al. publicaron un nuevo método de reticulación térmica iniciada por radicales para fabricar estructuras macroscópicas porosas de carbono utilizando nanotubos de carbono de pared simple y múltiple como bloques de construcción.[33] Estas estructuras poseen poros de dimensiones macro- micro- y nanoscópicas, y la porosidad se puede adaptar para aplicaciones específicas. Se pueden usar como dispositivos para el almacenamiento de energía, supercondensadores, transistores de emisión de campo, catálisis de alto rendimiento, dispositivos fotovoltaicos y biomédicos, implantes y sensores.[34][35]

Otras morfologías

Nanobrote de carbono

Los nanobrotes de carbono son un material creado en la década de los 2000, que combina nanotubos de carbono y fullerenos. Están formados por moléculas esféricas, semejantes a los fullerenos, unidas covalentemente a las paredes laterales exteriores de un nanotubo de carbono, como yemas o «brotes» en una rama. Este material híbrido combina propiedades útiles de los fullerenos y los nanotubos de carbono. Son emisores de campo excepcionalmente buenos.[36] En materiales compuestos, las moléculas de fullereno adjuntas pueden funcionar como anclajes moleculares que evitan el deslizamiento de los nanotubos, mejorando así las propiedades mecánicas del compuesto.

Las vainas de carbono son otro material que combina fullerenos con nanotubos de carbono. En este caso, el nanotubo encapsula las moléculas de fullereno en su interior, a modo de guisantes en una vaina.[37][38] Poseen propiedades magnéticas interesantes en ciertas condiciones de calentamiento e irradiación. También se pueden utilizar como un oscilador en ciertas investigaciones.[39][40]

Un nanotoro es un nanotubo de carbono doblado sobre sí mismo en forma de toro (forma de 8). Los nanotoros tienen muchas propiedades únicas, como momentos magnéticos muy altos para radios específicos.[41] El momento magnético, la estabilidad térmica y otras propiedades varían mucho según el radio del toro y el radio del tubo.[41][42]

Los nanotubos de carbono también pueden combinarse con hojas de grafeno que crecen a lo largo de las paredes laterales de nanotubos de paredes múltiples. La densidad foliar puede variar en función de las condiciones de depósito —por ejemplo, la temperatura y el tiempo— entre menos de una decena de capas de grafeno hasta una estructura más gruesa, más parecida al grafito.[43] La deposición de una alta densidad de hojas de grafeno a lo largo de los CNT alineados puede aumentar significativamente la capacidad de carga total por unidad de área nominal en comparación con otras nanoestructuras de carbono.[44]

Los nanotubos de carbono pueden formar una estructura cuasimonodimensional semejante en forma a una pila de copas (cup-stacked nanotubes o CSCNT); al contrario de los nanotubos regulares y otras nanoestructuras de carbono, que normalmente se comportan como conductores, los CSCNT son semiconductores debido al apilamiento de las capas de grafeno.[45]

Propiedades

Ejemplo de gráfico de Kataura

Las propiedades mecánicas, eléctricas, ópticas y térmicas de los nanotubos de carbono de pared simple guardan más relación con la estructura del nanotubo —tipificada por los índices (,)—, que con otras propiedades geométricas: diferentes tipos de nanotubos, pueden tener propiedades radicalmente distintas. La estructura de bandas para un nanotubo de tipo (,) puede calcularse fácilmente.[46] En 1999, Hiromichi Kataura introdujo un gráfico basado en estos cálculos para explicar resultados experimentales. Los gráficos de Kataura relacionan el diámetro del tubo con las bandas de energía y su forma oscilante ilustra la fuerte dependencia con (,).[47] Por ejemplo, los nanotubos de tipos (10,1) y (8,3) tienen un diámetro muy parecido, pero el primero se asemeja a un metal y el segundo es un semiconductor.

Propiedades mecánicas

Haces de nanotubos de carbono

Los nanotubos de carbono son las moléculas más fuertes y rígidas descubiertas hasta ahora en términos de resistencia a la tracción y módulo elástico. Estas propiedades mecánicas provienen de los enlaces sp2 covalentes formados entre los átomos de carbono individuales. En 2000, se obtuvo un valor de 63 GPa para la tensión de rotura de un nanotubo de carbono de paredes múltiples;[1] esto significa que un cable de 1 mm2 de sección transversal podría soportar un peso de 6422 kg. Otros estudios, entre ellos uno realizado en 2008, revelaron que los nanotubos aislados tienen una resistencia a la tracción de unos 100 GPa, consistente con las predicciones de los modelos cuánticos y atomísticos.[48] Dada la baja densidad los nanotubos de carbono —entre 1,3 y 1,4 g/cm3—,[49] su fuerza específica de hasta 48 000 kN·m·kg−1 es la más alta de los materiales conocidos; como comparación, el valor equivalente para el acero de alto contenido en carbono es de 154 kN·m·kg−1.

Aunque la resistencia de los nanotubos simples es extremadamente alta, las débiles interacciones entre los tubos adyacentes conllevan una reducción significativa de la resistencia efectiva de los nanotubos de carbono de pared múltiple y los haces de nanotubos, que puede alcanzar solo unos pocos GPa.[50] La irradiación por electrones de alta energía, que crea conexiones entre la superficie y los tubos internos aumenta la resistencia de estos materiales hasta alrededor de 60 GPa para nanotubos de carbono de paredes múltiples,[48] y unos 17 GPa para haces de nanotubos de pared doble.[50]

Por otro lado, los nanotubos no muestran tanta resistencia a la compresión: debido a su estructura hueca y la alta razón entre su longitud y su anchura, tienden a colapsarse bajo fuerzas de compresión, torsión o flexión.[51] También son bastante blandos en la dirección radial e incluso las fuerzas de Van der Waals entre dos nanotubos adyacentes pueden deformarlos. Varios grupos han realizado nanoindentaciones con un microscopio de fuerza atómica y utilizado microscopía de fuerza atómica de contacto para medir la elasticidad radial de los nanotubos de carbono de pared múltiple y simple respectivamente; el módulo de Young obtenido es del orden de varios GPa.[cita requerida]

Propiedades eléctricas

Estructuras de banda calculadas para los nanotubos de carbono (6,0) (zigzag, metálico), (10,2) (semiconductor) y (10,10) (sillón, metálico)

A diferencia del grafeno, que es un semimetal bidimensional, los nanotubos de carbono son pueden comportarse como metales o semiconductores a lo largo del eje tubular dependiendo de su estructura. Un nanotubo de tipo (, ) es un metal si ; si es un múltiplo de 3 y , el nanotubo es un casi metal, con una banda prohibida muy pequeña; de lo contrario, el nanotubo es un semiconductor moderado.[52] Así, todos los nanotubos de sillón son metálicos, y los nanotubos (6,4), (9,1), etc. son semiconductores.[53] Los nanotubos de carbono no son semimetálicos porque el punto degenerado (el punto donde la banda π [enlace] se encuentra con la banda π* [anti-enlace], en el que la energía llega a cero) se aleja ligeramente del punto K en la zona de Brillouin debido a la curvatura de la superficie del tubo, lo que causa la hibridación entre las bandas de antienlace σ* y π* y la modificación de la dispersión de bandas.

Véase también

Referencias

  1. Yu, M.F., Lourie, O., Dyer, M.J., Moloni, K., Kell,y T.F., Ruoff, R.S. (2000). «Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load». Science (en inglés) 287 (5453): 637-640. Bibcode:2000Sci...287..637Y. PMID 10649994. doi:10.1126/science.287.5453.637.
  2. Sadri, R., Ahmadi, G., Togun, H., Dahari, M., Kazi, S.N., Sadeghinezhad, E., Zubir, N. (28 de marzo de 2014). «An experimental study on thermal conductivity and viscosity of nanofluids containing carbon nanotubes». Nanoscale Research Letters (en inglés) 9 (1): 151. Bibcode:2014NRL.....9..151S. PMC 4006636. PMID 24678607. doi:10.1186/1556-276X-9-151.
  3. Karousis, N., Tagmatarchis, N., Tasis, D. (2010). «Current progress on the chemical modification of carbon nanotubes». Chemical Reviews (en inglés) 110 (9): 5366-5397. PMID 20545303. doi:10.1021/cr100018g.
  4. Monthioux, M., Kuznetsov, V.L. (2006). «Who should be given the credit for the discovery of carbon nanotubes?». Carbon (en inglés) 44 (9): 1621-1623. doi:10.1016/j.carbon.2006.03.019. Archivado desde el original el 9 de octubre de 2022.
  5. Carbon Nanotubes as Platforms for Biosensors with Electrochemical and Electronic Transduction. Springer Theses (en inglés). Springer Heidelberg. 2012. pp. xx, 208. ISBN 978-3-642-31421-6. doi:10.1007/978-3-642-31421-6.
  6. Oberlin, A., Endo, M., Koyama, T. (1976). «Filamentous growth of carbon through benzene decomposition». Journal of Crystal Growth (en inglés) 32 (3): 335-349. Bibcode:1976JCrGr..32..335O. doi:10.1016/0022-0248(76)90115-9. Archivado desde el original el 9 de octubre de 2022.
  7. Eklund, P.C. (2007). «WTEC Panel Report on 'International Assessment of Research and Development of Carbon Nanotube Manufacturing and Applications'. Final Report» (en inglés). World Technology Evaluation Center (WTEC). Archivado desde el original el 11 de marzo de 2017. Consultado el 5 de agosto de 2015.
  8. Abrahamson J, Wiles PG, Rhoades BL (1999). «Structure of carbon fibres found on carbon arc anodes». Carbon (en inglés) 37 (11): 1873-1874. doi:10.1016/S0008-6223(99)00199-2.
  9. Izvestiya Akademii Nauk SSSR Metally (en ruso) 3: 12-17. 1982.
  10. Krätschmer, W., Lamb, L.D., Fostiropoulos, K.H., Huffman, D.R. (1990). «Solid C60: a new form of carbon». Nature (en inglés) 347 (6291): 354-358. Bibcode:1990Natur.347..354K. doi:10.1038/347354a0.
  11. Kokarneswaran, M., Selvaraj, P., Ashokan, T., Perumal, S., Sellappan, P., Murugan, K.D., Ramalingam, S., Mohan, N., Chandrasekaran, V. (2020). «Discovery of carbon nanotubes in sixth century BC potteries from Keeladi, India». Scientific Reports (en inglés) 10 (1): 19786. Bibcode:2020NatSR..1019786K. PMC 7666134. PMID 33188244. doi:10.1038/s41598-020-76720-z.
  12. Sinnott, S.B., Andrews, R. (2001). «Carbon Nanotubes: Synthesis, Properties, and Applications». Critical Reviews in Solid State and Materials Sciences (en inglés) 26 (3): 145-249. Bibcode:2001CRSSM..26..145S. doi:10.1080/20014091104189.
  13. Zhao, X., Liu, Y., Inoue, S., Suzuki, T., Jones, R.O., Ando, Y. (2004). «Smallest carbon nanotube is 3 Å in diameter». Physical Review Letters (en inglés) 92 (12): 125502. Bibcode:2004PhRvL..92l5502Z. PMID 15089683. doi:10.1103/PhysRevLett.92.125502. Archivado desde el original el 9 de octubre de 2022.
  14. Torres-Dias, A.C. (2017). «From mesoscale to nanoscale mechanics in single-wall carbon nanotubes». Carbon (en inglés) 123: 145-150. doi:10.1016/j.carbon.2017.07.036.
  15. Hayashi, T., Kim, Y.A., Matoba, T., Esaka, M., Nishimura, K., Tsukada, T., Endo, M., Dresselhaus, M.S. (2003). «Smallest Freestanding Single-Walled Carbon Nanotube». Nano Letters (en inglés) 3 (7): 887-889. Bibcode:2003NanoL...3..887H. doi:10.1021/nl034080r.
  16. Guan, L., Suenaga, K., Iijima, S. (2008). «Smallest carbon nanotube assigned with atomic resolution accuracy». Nano Letters (en inglés) 8 (2): 459-462. Bibcode:2008NanoL...8..459G. PMID 18186659. doi:10.1021/nl072396j.
  17. Jasti, R., Bhattacharjee, J., Neaton, J.B., Bertozzi, C.R. (2008). «Synthesis, characterization, and theory of [9]-, [12]-, and [18]cycloparaphenylene: carbon nanohoop structures». Journal of the American Chemical Society 130 (52): 17646-17647. PMC 2709987. PMID 19055403. doi:10.1021/ja807126u.
  18. Cheung, K.Y., Segawa, Y., Itami, K. (2020). «Synthetic Strategies of Carbon Nanobelts and Related Belt-Shaped Polycyclic Aromatic Hydrocarbons». Chemistry (en inglés) 26 (65): 14791-14801. PMID 32572996. doi:10.1002/chem.202002316.
  19. «Densest array of carbon nanotubes grown to date» (en inglés). KurzweilAI. 27 de septiembre de 2013.
  20. Sugime, H., Esconjauregui, S., Yang, J., D'Arsié, L., Oliver, R.A., Bhardwaj, S., Cepek, C., Robertson, J. (12 de agosto de 2013). «Low temperature growth of ultra-high mass density carbon nanotube forests on conductive supports». Applied Physics Letters (en inglés) 103 (7): 073116. Bibcode:2013ApPhL.103g3116S. doi:10.1063/1.4818619.
  21. Das, S. (2013). «A review on Carbon nano-tubes – A new era of nanotechnology». International Journal of Emerging Technology and Advanced Engineering (en inglés) 3 (3): 774-781. Archivado desde el original el 9 de octubre de 2022.
  22. Piao, Y., Chen, C.F., Green, A.A., Kwon, H., Hersam, M.C., Lee, C.S., Schatz, G.C., Wang, Y. (7 de julio de 2011). «Optical and Electrical Properties of Inner Tubes in Outer Wall-Selectively Functionalized Double-Wall Carbon Nanotubes». The Journal of Physical Chemistry Letters (en inglés) 2 (13): 1577-1582. doi:10.1021/jz200687u.
  23. Flahaut, E., Bacsa, R., Peigney, A., Laurent, C. (2003). «Gram-scale CCVD synthesis of double-walled carbon nanotubes». Chemical Communications (en inglés) (12): 1442-1443. PMID 12841282. doi:10.1039/b301514a. Archivado desde el original el 9 de octubre de 2022.
  24. Cumings, J., Zettl, A. (2000). «Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes». Science (en inglés) 289 (5479): 602-604. Bibcode:2000Sci...289..602C. PMID 10915618. doi:10.1126/science.289.5479.602.
  25. Treacy, M.M., Ebbesen, T.W., Gibson, J.M. (1996). «Exceptionally high Young's modulus observed for individual carbon nanotubes». Nature (en inglés) 381 (6584): 678-680. Bibcode:1996Natur.381..678T. doi:10.1038/381678a0.
  26. Zavalniuk, V., Marchenko, S. (2011). «Theoretical analysis of telescopic oscillations in multi-walled carbon nanotubes». Low Temperature Physics (en inglés) 37 (4): 337-342. Bibcode:2011LTP....37..337Z. arXiv:0903.2461. doi:10.1063/1.3592692. Archivado desde el original el 9 de octubre de 2022.
  27. Chernozatonskii, L.A. (1992). «Carbon nanotube connectors and planar jungle gyms». Physics Letters A (en inglés) 172 (3): 173-176. Bibcode:1992PhLA..172..173C. doi:10.1016/0375-9601(92)90978-u.
  28. Menon, M., Srivastava, D. (1 de diciembre de 1997). «Carbon Nanotube 'T Junctions': Nanoscale Metal-Semiconductor-Metal Contact Devices». Physical Review Letters (en inglés) 79 (22): 4453-4456. Bibcode:1997PhRvL..79.4453M. doi:10.1103/physrevlett.79.4453.
  29. Lambin, P. (1996). «Atomic structure and electronic properties of bent carbon nanotubes». Synth. Met. (en inglés) 77 (1–3): 249-1254. doi:10.1016/0379-6779(96)80097-x.
  30. Ma, K.L. (2011). «Electronic transport properties of junctions between carbon nanotubes and graphene nanoribbons». European Physical Journal B (en inglés) 83 (4): 487-492. Bibcode:2011EPJB...83..487M. doi:10.1140/epjb/e2011-20313-9.
  31. Harris, P.J., Suarez-Martinez, I., Marks, N.A. (2016). «The structure of junctions between carbon nanotubes and graphene shells». Nanoscale (en inglés) 8 (45): 18849-18854. PMID 27808332. doi:10.1039/c6nr06461b. Archivado desde el original el 9 de octubre de 2022.
  32. Dimitrakakis, G.K., Tylianakis, E., Froudakis, G.E. (2008). «Pillared graphene: a new 3-D network nanostructure for enhanced hydrogen storage». Nano Letters (en inglés) 8 (10): 3166-3170. Bibcode:2008NanoL...8.3166D. PMID 18800853. doi:10.1021/nl801417w.
  33. Lalwani, G., Kwaczala, A.T., Kanakia. S., Patel, S.C., Judex, S., Sitharaman, B. (2013). «Fabrication and Characterization of Three-Dimensional Macroscopic All-Carbon Scaffolds». Carbon (en inglés) 53: 90-100. PMC 3578711. PMID 23436939. doi:10.1016/j.carbon.2012.10.035.
  34. Lalwani, G., Gopalan, A., D'Agati, M., Sankaran, J.S., Judex, S., Qin, Y.X., Sitharaman, B. (2015). «Porous three-dimensional carbon nanotube scaffolds for tissue engineering». Journal of Biomedical Materials Research. Part A (en inglés) 103 (10): 3212-3225. PMC 4552611. PMID 25788440. doi:10.1002/jbm.a.35449.
  35. Noyce, S.G., Vanfleet, R.R., Craighead, H.G., Davis, R.C. (2019). «High surface-area carbon microcantilevers». Nanoscale Advances (en inglés) 1 (3): 1148-1154. Bibcode:2019NanoA...1.1148N. PMC 9418787. PMID 36133213. doi:10.1039/C8NA00101D.
  36. Nasibulin, A.G., Pikhitsa, P.V., Jiang, H., Brown, D.P., Krasheninnikov, A.V., Anisimov, A.S., Queipo, P., Moisala, A., Gonzalez, D., Lientschnig, G., Hassanien, A., Shandakov, S.D., Lolli, G., Resasco, D.E., Choi, M., Tománek, D., Kauppinen, E.I. (2007). «A novel hybrid carbon material». Nature Nanotechnology (en inglés) 2 (3): 156-161. Bibcode:2007NatNa...2..156N. PMID 18654245. doi:10.1038/nnano.2007.37.
  37. Smith, B.W., Monthioux, M., Luzzi, D.E. (1998). «Encapsulated C-60 in carbon nanotubes». Nature (en inglés) 396 (6709): 323-324. Bibcode:1998Natur.396R.323S. doi:10.1038/24521.
  38. Smith, B.W., Luzzi, D.E. (2000). «Formation mechanism of fullerene peapods and coaxial tubes: a path to large scale synthesis». Chem. Phys. Lett. (en inglés) 321 (1–2): 169-174. Bibcode:2000CPL...321..169S. doi:10.1016/S0009-2614(00)00307-9.
  39. Su, H., Goddard, W.A., Zhao, Y. (2006). «Dynamic friction force in a carbon peapod oscillator». Nanotechnology (en inglés) 17 (22): 5691-5695. Bibcode:2006Nanot..17.5691S. arXiv:cond-mat/0611671. doi:10.1088/0957-4484/17/22/026. Archivado desde el original el 9 de octubre de 2022.
  40. Wang, M., Li, C.M. (2010). «An oscillator in a carbon peapod controllable by an external electric field: a molecular dynamics study». Nanotechnology (en inglés) 21 (3): 035704. Bibcode:2010Nanot..21c5704W. PMID 19966399. doi:10.1088/0957-4484/21/3/035704.
  41. Liu, L., Guo, G.Y., Jayanthi, C.S., Wu, S.Y. (2002). «Colossal paramagnetic moments in metallic carbon nanotori». Physical Review Letters (en inglés) 88 (21): 217206. Bibcode:2002PhRvL..88u7206L. PMID 12059501. doi:10.1103/PhysRevLett.88.217206.
  42. Huhtala, M., Kuronen, A., Kaski, K. (2002). «Carbon nanotube structures: Molecular dynamics simulation at realistic limit». Computer Physics Communications (en inglés) 146 (1): 30-37. Bibcode:2002CoPhC.146...30H. doi:10.1016/S0010-4655(02)00432-0. Archivado desde el original el 27 de junio de 2008.
  43. Parker, C.B., Raut, A.S., Brown, B., Stoner, B.R., Glass, J.T. (2012). «Three-dimensional arrays of graphenated carbon nanotubes». J. Mater. Res. 7 (en inglés) 27 (7): 1046-1053. Bibcode:2012JMatR..27.1046P. doi:10.1557/jmr.2012.43.
  44. Stoner, B.R., Glass, J.T. (2012). «Carbon nanostructures: a morphological classification for charge density optimization». Diamond and Related Materials 23: 130-134. Bibcode:2012DRM....23..130S. doi:10.1016/j.diamond.2012.01.034.
  45. Liu, Q., Ren, W., Chen, Z.G., Yin, L., Li, F., Cong, H., Cheng, H.M. (2009). «Semiconducting properties of cup-stacked carbon nanotubes». Carbon (en inglés) 47 (3): 731-736. doi:10.1016/j.carbon.2008.11.005. Archivado desde el original el 9 de enero de 2015.
  46. Maruyama, S. «Shigeo Maruyama's Fullerene and Carbon Nanotube Site» (en inglés). Archivado desde el original el 20 de diciembre de 2012. Consultado el 8 de diciembre de 2008.
  47. Kataura, H. et al. (1999). «Optical Properties of Single-Wall Carbon Nanotubes». Synthetic Metals (en inglés) 103 (1–3): 2555-2558. doi:10.1016/S0379-6779(98)00278-1.
  48. Peng, B., Locascio, M., Zapol, P., Li, S., Mielke, S.L., Schatz, G.C., Espinosa, H.D. (2008). «Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements». Nature Nanotechnology (en inglés) 3 (10): 626-631. PMID 18839003. doi:10.1038/nnano.2008.211.
  49. Collins, P.G., Avouris, P. (2000). «Nanotubes for electronics». Scientific American (en inglés) 283 (6): 62-69. Bibcode:2000SciAm.283f..62C. PMID 11103460. doi:10.1038/scientificamerican1200-62.
  50. Filleter, T., Bernal, R., Li, S., Espinosa, H.D. (2011). «Ultrahigh strength and stiffness in cross-linked hierarchical carbon nanotube bundles». Advanced Materials (en inglés) 23 (25): 2855-2860. Bibcode:2011AdM....23.2855F. PMID 21538593. doi:10.1002/adma.201100547.
  51. Jensen, K., Mickelson, W., Kis, A., Zettl, A. (26 de noviembre de 2007). «Buckling and kinking force measurements on individual multiwalled carbon nanotubes». Physical Review B (en inglés) 76 (19): 195436. Bibcode:2007PhRvB..76s5436J. doi:10.1103/PhysRevB.76.195436.
  52. Laird, E.A., Kuemmeth, F., Steele, G.A., Grove-Rasmussen, K., Nygård, J., Flensberg, K., Kouwenhoven, L.P. (2015). «Quantum Transport in Carbon Nanotubes». Reviews of Modern Physics (en inglés) 87 (3): 703-764. Bibcode:2015RvMP...87..703L. arXiv:1403.6113. doi:10.1103/RevModPhys.87.703.
  53. Lu, X., Chen, Z. (2005). «Curved pi-conjugation, aromaticity, and the related chemistry of small fullerenes (< C60) and single-walled carbon nanotubes». Chemical Reviews (en inglés) 105 (10): 3643-3696. PMID 16218563. doi:10.1021/cr030093d.

Enlaces externos

Este artículo ha sido escrito por Wikipedia. El texto está disponible bajo la licencia Creative Commons - Atribución - CompartirIgual. Pueden aplicarse cláusulas adicionales a los archivos multimedia.