Ordinal sucesor

En teoría de conjuntos, el sucesor de un número ordinal α es el número ordinal más pequeño por encima de α. Todo ordinal no nulo es o bien sucesor de otro (un ordinal sucesor) o bien un ordinal límite.

Propiedades

Todo ordinal distinto de 0 es o bien un ordinal sucesor o bien un ordinal límite.[1]

En el modelo de Von Neumann

Usando la construcción de los números ordinales de von Neumann (el modelo estándar que se usa en teoría de conjuntos), el sucesor S(α) de un ordinal α viene dado por la siguiente fórmula:[1]

Como el orden de los ordinales viene dado por α < β si y solo si α  β, es inmediato que no hay número ordinal entre α y S (α), y también es claro que α < S(a).

Suma de ordinales

La operación sucesor se puede usar para definir la suma de ordinales rigurosamente mediante inducción transfinita de la siguiente forma:

y para un ordinal límite λ

En particular, S(α) = α + 1. Nótese que, por lo general, (la suma de ordinales no es conmutativa); de hecho esto solo ocurre para ordinales finitos, siendo para ordinales infinitos.

La multiplicación y la exponenciación se definen de manera similar.

Topología

Los puntos sucesores y el cero son los puntos aislados de la clase de los números ordinales con la topología de orden.[2]

Véase también

Referencias

  1. Cameron, Peter J. (1999), Sets, Logic and Categories, Springer Undergraduate Mathematics Series, Springer, p. 46, ISBN 9781852330569..
  2. Devlin, Keith (1993), The Joy of Sets: Fundamentals of Contemporary Set Theory, Undergraduate Texts in Mathematics, Springer, Exercise 3C, p. 100, ISBN 9780387940946..
Este artículo ha sido escrito por Wikipedia. El texto está disponible bajo la licencia Creative Commons - Atribución - CompartirIgual. Pueden aplicarse cláusulas adicionales a los archivos multimedia.