Par Wilf–Zeilberger

En matemáticas, específicamente combinatoria, un par Wilf–Zeilberger, o par WZ, es un par de funciones que pueden ser utilizadas para comprobar identidates combinatorias. Los pares WZ se conocen por Herbert S. Wilf y Doron Zeilberger, y son un instrumento en la evaluación de muchas sumas implicando coeficientes binomiales, factoriales, y en general cualquier serie hipergeométrica. Una función contrapartida WZ puede ser utilizada para encontrar una suma equivalente más sencilla. Aunque encontrar los pares WZ manualmente es impracticable en la mayoría de los casos, el algoritmo de Gosper proporciona un método seguro para encontrar una función comtrapartida WZ y puede ser implementado en un programa de manipulación simbólico.

Definición

Dos funciones F y G forman un par WZ si y sólo si se cumplen las siguientes condiciones:



Juntas, estas condiciones aseguran:



Debido a que G es telescópica:



Por tanto:



Esto es:



La constante no depende de n. Su valor puede ser encontrado sustituyendo n = n0, para un n0 particular.

Si F y G forman un par WZ, entonces  satisfacen la relación:



Dónde  es una función racional de n y k y se llama el certificado de prueba WZ.

Referencias

Enlaces externos

Este artículo ha sido escrito por Wikipedia. El texto está disponible bajo la licencia Creative Commons - Atribución - CompartirIgual. Pueden aplicarse cláusulas adicionales a los archivos multimedia.