Poliedro prismático uniforme
En la geometría, un poliedro prismático uniforme o regular es un poliedro uniforme con simetría diedral. Estos existen en dos familias infinitas, los prismas uniformes y los antiprismas uniformes. Todos tienen sus vértices en planos paralelos, por lo que se denominan prismatoides.
Tipos
Grupo de simetría | Convexo | Formas estrelladas | ||||||
---|---|---|---|---|---|---|---|---|
D2d, [2+,2], (2*2) | 3.3.3 | |||||||
D3h, [2,3], (*223) | 3.4.4 | |||||||
D3d, [2+,3], (2*3) | 3.3.3.3 | |||||||
D4h, [2,4], (*224) | 4.4.4 | |||||||
D4d, [2+,4], (2*4) | 3.3.3.4 | |||||||
D5h, [2,5], (*225) | 4.4.5 |
4.4.5⁄2 |
3.3.3.5⁄2 | |||||
D5d, [2+,5], (2*5) | 3.3.3.5 |
3.3.3.5⁄3 | ||||||
D6h, [2,6], (*226) | 4.4.6 | |||||||
D6d, [2+,6], (2*6) | 3.3.3.6 | |||||||
D7h, [2,7], (*227) | 4.4.7 |
4.4.7⁄2 |
4.4.7⁄3 |
3.3.3.7⁄2 |
3.3.3.7⁄4 | |||
D7d, [2+,7], (2*7) | 3.3.3.7 |
3.3.3.7⁄3 | ||||||
D8h, [2,8], (*228) | 4.4.8 |
4.4.8⁄3 | ||||||
D8d, [2+,8], (2*8) | 3.3.3.8 |
3.3.3.8⁄3 |
3.3.3.8⁄5 | |||||
D9h, [2,9], (*229) | 4.4.9 |
4.4.9⁄2 |
4.4.9⁄4 |
3.3.3.9⁄2 |
3.3.3.9⁄4 | |||
D9d, [2+,9], (2*9) | 3.3.3.9 |
3.3.3.9⁄5 | ||||||
D10h, [2,10], (*2.2.10) | 4.4.10 |
4.4.10⁄3 | ||||||
D10d, [2+,10], (2*10) | 3.3.3.10 |
3.3.3.10⁄3 | ||||||
D11h, [2,11], (*2.2.11) | 4.4.11 |
4.4.11⁄2 |
4.4.11⁄3 |
4.4.11⁄4 |
4.4.11⁄5 |
3.3.3.11⁄2 |
3.3.3.11⁄4 |
3.3.3.11⁄6 |
D11d, [2+,11], (2*11) | 3.3.3.11 |
3.3.3.11⁄3 |
3.3.3.11⁄5 |
3.3.3.11⁄7 | ||||
D12h, [2,12], (*2.2.12) | 4.4.12 |
4.4.12⁄5 | ||||||
D12d, [2+,12], (2*12) | 3.3.3.12 |
3.3.3.12⁄5 |
3.3.3.12⁄7 | |||||
... |
Este artículo ha sido escrito por Wikipedia. El texto está disponible bajo la licencia Creative Commons - Atribución - CompartirIgual. Pueden aplicarse cláusulas adicionales a los archivos multimedia.