Polinomios de Bernoulli

En matemáticas, los polinomios de Bernoulli se definen mediante la función generatriz:

Polinomios de Bernoulli

Aparecen en el estudio de numerosas funciones especiales, en particular de la función zeta de Riemann y de la función zeta de Hurwitz. Los números de Bernoulli son los términos independientes de los polinomios correspondientes, i.e., .

La identidad nos permite dar una forma cerrada de la suma



Los polinomios de Bernoulli se pueden calcular a partir de la siguiente fórmula:


Expresión explícita de polinomios de menor grado

Los primeros Polinomios de Bernoulli son:

.
.
.
.

Véase también

Referencias

  • Zwillinger, D. CRC Standard Mathematical Tables and Formulae, CRC Press, 2003. ISBN 1584882913.

Enlaces externos

Este artículo ha sido escrito por Wikipedia. El texto está disponible bajo la licencia Creative Commons - Atribución - CompartirIgual. Pueden aplicarse cláusulas adicionales a los archivos multimedia.