Teorema de Siegel–Walfisz

En teoría analítica de números, el teorema de Siegel–Walfisz fue obtenido por Arnold Walfisz como una aplicación del teorema de Carl Ludwig Siegel a números primos en progresión aritmética.[1]

Enunciado del teorema de Siegel–Walfisz

Se define

donde denota la función de von Mangoldt y φ es la función indicatriz de Euler.

El teorema expresa que dado cualquier número real N existe una constante positiva CN dependiente únicamente de N tal que

siempre que (a, q) = 1 y

Observaciones

La constante CN no es efectiva computacionalmente porque el teorema Siegel es inefectivo.

Del teorema se puede deducir la siguiente forma del teorema de los números primos para progresiones aritméticas: Si, para (a,q)=1, mediante denotamos el número de primos menor o igual a x que son congruentes con a mod q, entonces

donde N, a, q, CN y φ son como en el teorema, y Li denota la integral logarítmica desplazada.

Referencias

  1. Walfisz, Arnold (1936). «Zur additiven Zahlentheorie. II». Mathematische Zeitschrift 40 (1): 592-607. doi:10.1007/BF01218882. (en alemán)
Este artículo ha sido escrito por Wikipedia. El texto está disponible bajo la licencia Creative Commons - Atribución - CompartirIgual. Pueden aplicarse cláusulas adicionales a los archivos multimedia.