Teorema de Wilson

En matemáticas, particularmente en teoría de números y álgebra abstracta, el teorema de Wilson es una proposición clásica vinculada con la divisibilidad y la primalidad de números enteros. A continuación, se presenta su enunciado:

Si p es un número primo, entonces (p − 1)! ≡ -1 (mod p)


John Wilson


La proposición recíproca también es verdadera, por lo que puede afirmarse que un número n> 1 es primo si y solo si (n− 1)! ≡ − 1 (mod n). Sin embargo, solo la implicación de arriba es conocida como teorema de Wilson (o Congruencia de Wilson). Por tanto, el teorema, probado su recíproco, proporciona una condición necesaria y suficiente para que el número entero sea primo.[1][2]

Historia

Fue atribuido a John Wilson por Edward Waring, quien en 1770 comentó acerca de que Wilson dejara anotado el hallazgo. No hay evidencia de que Wilson hubiese hallado la demostración, y ciertamente Waring no la halló. Fue Lagrange quien, en 1771 dio la primera demostración. Con toda propiedad, el teorema debe ser atribuido a Abu 'Ali al-Hasan ibn al-Haytham, llamado en Occidente Alhazen, quien lo formuló a comienzos del siglo XI.

Ejemplo

La siguiente tabla muestra los valores de n desde 2 a 30, (n-1)!, Y el resto al (n-1)! se divide por n. (El resto cuando m se divide por n se escribe m mod n). El color de fondo es de color rosa para los valores primos de n, color verde claro para valores compuestos.

Tabla de resto módulo n
n>1 -1 mod n
211 1
322 2
462 3
5244 4
61200 5
77206 6
850400 7
9403200 8
103628800 9
11362880010 10
12399168000 11
1347900160012 12
1462270208000 13
15871782912000 14
1613076743680000 15
172092278988800016 16
183556874280960000 17
19640237370572800018 18
201216451004088320000 19
2124329020081766400000 20
22510909421717094400000 21
23112400072777760768000022 22
24258520167388849766400000 23
256204484017332394393600000 24
26155112100433309859840000000 25
274032914611266056355840000000 26
28108888694504183521607680000000 27
2930488834461171386050150400000028 28
3088417619937397019545436160000000 29

Demostración

Usando aritmética modular

Por contradicción, suponga que para un número p ≥ 2 que no es primo la expresión

se cumple. Dado que p no es primo, existe a ∈ {2, ... , p − 1} tal que a | p, es decir, mcd(a, p) ≠ 1. La expresión anterior se puede reescribir como

siendo

Aprovechando el hecho de que (-1)2 ≡ 1 (mod p), se tiene que (a · α)2 ≡ (-1)2 ≡ 1 (mod p). Se deduce entonces que a2 tiene inverso multiplicativo en módulo p, lo cual no puede ser cierto pues mcd(a2, p) ≠ 1, de manera que la suposición inicial de que p no es primo es falsa.

Usando teoría de grupos

Esta demostración usa el hecho de que si p es un número primo, entonces el conjunto de números G = (Z/pZ)× = {1, 2, ... p − 1} forma un grupo bajo la multiplicación. Esto significa que para cada elemento a de G, hay un único inverso multiplicativo b en G tal que ab ≡ 1 (mod p). Si ab (mod p), entonces a2 ≡ 1 (mod p), que se puede factorizar en a2 − 1 = (a + 1)(a − 1) ≡ 0 (mod p), y puesto que p es primo, entonces a ≡ 1 o −1 (mod p), por ejemplo a = 1 o a = p − 1.

En otras palabras, 1 y p − 1 son cada uno su propio inverso, pero para cualquier otro elemento de G hay un inverso, también en G, así que si tomamos todos los elementos de G por parejas y los multiplicamos todos ellos juntos, el producto será igual a −1 (módulo p). Por ejemplo, si p = 11, tenemos que:

Las propiedades conmutativas y asociativas son usadas en el procedimiento de arriba. Todos los elementos en el producto anterior serán de la forma g g −1 ≡ 1 (mod p) excepto 1 (p  1), que están al principio del producto.

Si p = 2, el resultado es trivial e inmediato.

Para demostrar el inverso del teorema (ver siguiente sección), supóngase que la congruencia se cumple para un número compuesto n, nótese entonces que n tiene un divisor propio d con 1 < d < n. Claramente, d divide a (n − 1)! pero por la congruencia, d también divide a (n − 1)! + 1, así que d divide a 1, con lo que se llega a una contradicción.

Usando polinomios

Sea p un número primo. Consideremos el polinomio

Recordemos que si f(x) es un polinomio no nulo de grado d sobre un cuerpo F, entonces f(x) tiene un máximo de d raíces en F, y recordemos que el conjunto de todos los restos módulo un primo, con las operaciones de suma y multiplicación, es un cuerpo. Ahora, siendo g(x)

Puesto que los coeficientes de mayor orden se cancelan, f(x) es un polinomio de grado p − 2 como mucho. Por tanto, si tomamos restos módulo p, f(x) tendrá a lo sumo p − 2 raíces módulo p. Sin embargo, a la vista de la definición de f(x), del pequeño teorema de Fermat se sigue que cada elemento 1, 2, ..., p − 1 es una raíz de f(x) (por lo que, a fortiori, es una raíz de f(x) módulo p). Esto es imposible a menos que f(x) sea idénticamente cero módulo p, esto es, a menos que cada coeficiente de f(x) sea divisible por p.

Dado que el término constante de f(x) es justamente (p − 1)! + 1,

Inverso

El inverso del teorema de Wilson dice que para cualquier número compuesto n > 5,

n divide a (n − 1)!.

Se deja el caso n = 4, para el cual 3! no es divisible por 4 (es únicamente divisible por 2).

En efecto, si q es un factor primo de n, de tal manera que n = qa, los números

1, 2, ..., n − 1

incluyendo a − 1 múltiplos de q. Por lo tanto, las potencias de q que dividen al factorial son al menos n/q − 1; y las potencias que dividen a n son a lo máximo

log n/log q.

La inecuación

log n/log qn/q − 1

se cumple en general, excepto para el caso q = 2 y n = 4.

Test de primalidad

El teorema de Wilson no se utiliza como test de primalidad en la práctica, ya que para calcular (n − 1)! módulo n para un número n grande es costoso (computacionalmente hablando), y se conocen tests más sencillos y rápidos.

Usando el teorema del Wilson, se tiene que para cada número primo p:

donde p = 2n + 1. Esto se convierte en

Así, la primalidad del número se determina mediante los residuos cuadráticos de p. Esto se puede usar de hecho para probar parte de otro famoso resultado: −1 es un cuadrado (residuo cuadrático) mod p si p ≡ 1 (mod 4). Para la suposición, p = 4k + 1 para algún entero k. Entonces, tomando n = 2k y sustituyendo, se concluye que:

El teorema de Wilson ha sido utilizado para generar fórmulas para los primos, pero es demasiado lento como para tener valor práctico.

Generalización

El teorema de Wilson se puede generalizar, como mostró Carl Friedrich Gauss en su libro Disquisitiones Arithmeticae:


donde p es un número primo impar, y k pertenece a los números naturales, es decir, . El teorema se generaliza más por el hecho de que en cualquier grupo abeliano finito, ya sea el producto de todos los elementos es la identidad, o precisamente hay un elemento a de orden 2. En este último caso, el producto de todos los elementos es igual a.

Véase también

Referencias

  1. Burton W. Jones Teoría de los números Editorial F. Trillas Ciudad de México (1969)
  2. Se ha ha adecuado el enunciado que da Iván Vinográdov en su «Fundamentos de la teoría de los números»

Literatura consultada

  • Eric W. Weisstein. «Wilson's theorem.». Consultado el 30 de diciembre de 2008.
  • Reid, Constance (2006). From Zero to Infinity: What Makes Numbers Interesting. Massachusetts (USA): AK Peters. ISBN 1568812736.

Enlaces externos

Este artículo ha sido escrito por Wikipedia. El texto está disponible bajo la licencia Creative Commons - Atribución - CompartirIgual. Pueden aplicarse cláusulas adicionales a los archivos multimedia.