Algorithme APriori

L'algorithme APriori[1] est un algorithme d'exploration de données conçu en 1994, par Rakesh Agrawal et Ramakrishnan Sikrant, dans le domaine de l'apprentissage des règles d'association. Il sert à reconnaitre des propriétés qui reviennent fréquemment dans un ensemble de données et d'en déduire une catégorisation.

Principes

L'algorithme Apriori s'execute en deux étapes :

  • Soient minsupp l'indice de support minimum donné, et minconf l'indice de confiance donné.
  • Génération de tous les itemsets fréquents c'est-à-dire
  • Génération de toutes les règles d'associations de confiance à partir des itemsets fréquents, c'est-à-dire

Voir aussi

Liens internes

Références

  1. Rakesh Agrawal, Ramakrishnan Srikant, Fast Algorithms for Mining Association Rules
  • Portail de l’informatique
  • Portail de l'informatique théorique
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.