Chaîne de Cunningham

En mathématiques, une chaîne de Cunningham est une certaine suite de nombres premiers. Les chaînes de Cunningham furent nommées en l'honneur du mathématicien Allan Cunningham (1842-1928).

Pour les articles homonymes, voir Cunningham.

Une chaîne de Cunningham de première espèce est une suite de nombres premiers (p1…, pn) telle que pour tout 1 ≤ i < n, pi+1 = 2 pi + 1. (Chacun des termes d'une telle chaîne excepté le dernier d'entre eux est un nombre premier de Sophie Germain). De manière similaire, une chaîne de Cunningham de deuxième espèce est une suite de nombres premiers (p1…, pn) tels que pour tout 1 ≤ i < n, pi+1 = 2 pi – 1.

Les chaînes de Cunningham sont aussi généralisées en suites de nombres premiers (p1…, pn) telles que pour tout 1 ≤ i < n, pi+1 = api + b pour des entiers premiers entre eux fixés a, b ; les chaînes résultantes sont appelées chaînes de Cunningham généralisées.

Une chaîne de Cunningham est dite complète si elle ne peut pas être étendue davantage, c'est-à-dire s'il n'existe aucun nombre premier qui pourrait suivre le dernier terme de la chaîne, ou précéder le premier.

Exemples

Exemples de chaînes complètes de Cunningham du premier type :

2, 5, 11, 23, 47 (le nombre suivant serait 95.)
3, 7
29, 59 (le nombre suivant serait 119 = 7*17.)
41, 83, 167
89, 179, 359, 719, 1439, 2879 (le nombre suivant serait 5759 = 13*443.)

Le record actuel est une chaîne de 14 nombres.

Exemples de chaînes complètes de Cunningham du deuxième type :

2, 3, 5 (le nombre suivant serait 9)
7, 13
19, 37, 73
31, 61

Le record actuel est une chaîne de 16 nombres

Liens externes


(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Cunningham chain » (voir la liste des auteurs).
  • Portail des mathématiques
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.