Composantes d'un vecteur
En algèbre linéaire, les composantes d'un vecteur d'un K-espace vectoriel, dans une base donnée, sont une représentation explicite de ce vecteur par une famille de scalaires. Lorsque l'espace est de dimension n sur le corps K, les composantes forment un élément de l'espace vectoriel Kn.
Les composantes des vecteurs (d'un espace vectoriel de dimension finie) permettent de ramener des calculs vectoriels à des calculs sur des tableaux de nombres (n-uplets, matrices, vecteurs colonnes) qui peuvent être effectués explicitement.
Définition
Soit E un K-espace vectoriel de dimension n et soit une base de E.
Alors pour tout vecteur de E, il existe une unique combinaison linéaire des vecteurs de la base, égale à :
c'est-à-dire que les scalaires où sont déterminés de façon unique par et .
Maintenant, les composantes (ou les coordonnées) de dans la base ou relativement à la base , sont par définition la famille . Les composantes peuvent aussi être représentées en colonne sous forme d'une matrice :
- .
La matrice est appelée matrice colonne — ou vecteur colonne — des composantes — ou des coordonnées — de dans la base .
Cette matrice est parfois notée , ou encore .
Pour , le scalaire est appelé la -ème composante — ou -ème coordonnée — du vecteur dans la base .
Application composantes
Le mécanisme précédent, qui à un vecteur de E qui fait correspondre ses composantes dans la base , peut être décrit par l'application , définie par
où appartiennent à et vérifient
Alors est une application linéaire de E dans Kn.
C'est même un isomorphisme : sa réciproque est définie par
Il est aussi possible de commencer par définir cette application , de constater que c'est un isomorphisme, puis de définir comme l'isomorphisme réciproque.
Exemples
Exemple 1
Soit l'espace vectoriel des polynômes de degré inférieur ou égal à 3. Cet espace est engendré par
et la famille est une base de cet espace.
La matrice colonne des composantes, dans cette base, du polynôme
s'écrit
Relativement à cette base, l'opérateur de dérivation , qui à associe , est représenté par la matrice
En utilisant cette représentation, il est aisé de déterminer les propriétés de l'opérateur, comme l'inversibilité, s'il est hermitien ou anti-hermitien ou rien du tout, son spectre / ses valeurs propres, etc.
Exemple 2
Les matrices de Pauli représentent l'opérateur spin lorsque les vecteurs propres correspondant à l'état de spin sont transformés en coordonnées.
Référence
- Portail de l’algèbre