Constante de Copeland-Erdős
En mathématiques, la constante de Copeland-Erdős est une constante mathématique créée en concaténant les représentations en base dix des nombres premiers.
Définition
Formellement, la constante de Copeland-Erdős est définie comme égale à :
- ,
où est le k-ième nombre premier, et la partie entière de son logarithme décimal.
Autrement dit, son développement décimal est la concaténation de « 0, » et des représentations en base dix des nombres premiers, c.-à-d. :
Propriétés
En base dix, cette constante est un nombre normal (donc irrationnel), ce qui fut prouvé par Arthur Herbert Copeland et Paul Erdős en 1946[1],[2]. En tant que tel, c'est aussi un nombre univers.
Sa représentation en fraction continue débute par [0; 4, 4, 8, 16, 18, 5, 1, etc.] (suite A30168 de l'OEIS).
Référence
- (en) Arthur H. Copeland et Paul Erdős, « Note on normal numbers », Bulletin of the American Mathematical Society, vol. 52, , p. 857-860 (DOI 10.1090/S0002-9904-1946-08657-7, Math Reviews 0017743, lire en ligne) ; cet article démontre que ce résultat est vrai pour toute suite d'entiers suffisamment dense.
- (en) Yann Bugeaud, Distribution Modulo One and Diophantine Approximation, Cambridge University Press, , 300 p. (ISBN 978-0-521-11169-0, lire en ligne), p. 87.
Voir aussi
Articles connexes
Lien externe
(en) Eric W. Weisstein, « Copeland-Erdős Constant », sur MathWorld
- Arithmétique et théorie des nombres