Continu indécomposable

En mathématiques, et plus précisément en topologie, on appelait continu un espace métrique compact et connexe. On dit qu'un tel espace E est un continu indécomposable s'il n'est pas réunion de deux continus (distincts de E).

La construction du continu BJK.

Le continu BJK est un exemple de continu indécomposable. Il fut découvert par Brouwer en 1910, et ce fut simplifié par Zygmunt Janiszewski et ensuite par Bronisław Knaster, qui donna aussi une preuve complète de son indécomposabilité

On peut construire la frontière de ce continu en commençant avec l'ensemble de Cantor C sur l'horizontale. Les points de l'ensemble sont liés par des demi-cercles. Pour tout point x dans l'ensemble C, le point (1-x) est aussi dans C, et ces deux points sont joints par un arc passant par en haut. Pour tout point x dans C autre que 0, il existe un n tel que , et le point est aussi dans C et se trouve entre les mêmes limites ; ces deux points sont joints par un arc passant par en dessous.

Voir aussi

Articles connexes

Référence

(en) Kuratowski, Topology, vol 2. Academic Press, New York, 1966.

  • Portail de la géométrie
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.