Excursion brownienne

Dans la théorie des probabilités, une excursion brownienne est un processus stochastique, qui est étroitement liée à un processus de Wiener (ou mouvement brownien). Les réalisations de l'excursion brownienne sont essentiellement des réalisations d'un processus de Wiener spécifique, qui satisfait à certaines conditions. En particulier, une excursion brownienne est un processus de Wiener conditionné à être positif et à prendre la valeur 0 au temps 1. On peut aussi le définir comme un pont brownien conditionné à être positif[1].

Une représentation de l'excursion brownienne.

Définition

Une représentation d'une excursion brownienne en termes d'un mouvement brownien W (due à Paul Lévy et notée par Kiyoshi Itō et Henry P. McKean, Jr[2]) se donne en termes de la dernière fois que W atteint zéro, avant le temps 1 et la première fois que le mouvement brownien atteint zéro, après le temps 1:

Si  est le temps auquel un pont brownien  atteint son minimum sur [0, 1], Vervaat (1979) montre que

Notes et références

  1. Durrett, Iglehart, Functionals of Brownian meander and Brownian excursion (1975)
  2. Itô et McKean (1974, page 75)

Bibliographie

  • Portail des probabilités et de la statistique
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.