Fonction de Sudan
En calculabilité, la fonction de Sudan est un exemple de fonction récursive mais non récursive primitive (de même que la fonction d'Ackermann, plus connue).
Elle fut conçue en 1927 par le mathématicien roumain Gabriel Sudan, élève de David Hilbert.
Définition
- ,
- ,
- .
Tableaux de valeurs
y\x | 0 | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|---|
0 | 0 | 1 | 2 | 3 | 4 | 5 |
1 | 1 | 2 | 3 | 4 | 5 | 6 |
2 | 2 | 3 | 4 | 5 | 6 | 7 |
3 | 3 | 4 | 5 | 6 | 7 | 8 |
4 | 4 | 5 | 6 | 7 | 8 | 9 |
5 | 5 | 6 | 7 | 8 | 9 | 10 |
6 | 6 | 7 | 8 | 9 | 10 | 11 |
y\x | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
1 | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | 25 | 27 | 29 |
2 | 4 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40 | 44 | 48 | 52 | 56 | 60 |
3 | 11 | 19 | 27 | 35 | 43 | 51 | 59 | 67 | 75 | 83 | 91 | 99 | 107 | 115 | 123 |
4 | 26 | 42 | 58 | 74 | 90 | 106 | 122 | 138 | 154 | 170 | 186 | 202 | 218 | 234 | 250 |
5 | 57 | 89 | 121 | 153 | 185 | 217 | 249 | 281 | 313 | 345 | 377 | 409 | 441 | 473 | 505 |
6 | 120 | 184 | 248 | 312 | 376 | 440 | 504 | 568 | 632 | 696 | 760 | 824 | 888 | 952 | 1016 |
7 | 247 | 375 | 503 | 631 | 759 | 887 | 1015 | 1143 | 1271 | 1399 | 1527 | 1655 | 1783 | 1911 | 2039 |
8 | 502 | 758 | 1014 | 1270 | 1526 | 1782 | 2038 | 2294 | 2550 | 2806 | 3062 | 3318 | 3574 | 3830 | 4086 |
9 | 1013 | 1525 | 2037 | 2549 | 3061 | 3573 | 4085 | 4597 | 5109 | 5621 | 6133 | 6645 | 7157 | 7669 | 8181 |
10 | 2036 | 3060 | 4084 | 5108 | 6132 | 7156 | 8180 | 9204 | 10228 | 11252 | 12276 | 13300 | 14324 | 15348 | 16372 |
11 | 4083 | 6131 | 8179 | 10227 | 12275 | 14323 | 16371 | 18419 | 20467 | 22515 | 24563 | 26611 | 28659 | 30707 | 32755 |
12 | 8178 | 12274 | 16370 | 20466 | 24562 | 28658 | 32754 | 36850 | 40946 | 45042 | 49138 | 53234 | 57330 | 61426 | 65522 |
13 | 16369 | 24561 | 32753 | 40945 | 49137 | 57329 | 65521 | 73713 | 81905 | 90097 | 98289 | 106481 | 114673 | 122865 | 131057 |
14 | 32752 | 49136 | 65520 | 81904 | 98288 | 114672 | 131056 | 147440 | 163824 | 180208 | 196592 | 212976 | 229360 | 245744 | 262128 |
On peut démontrer que F1(x, y) = F1(0, y) + 2y x.
y\x | 0 | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|---|
0 | 0 | 1 | 2 | 3 | 4 | 5 |
1 | 1 | 8 | 27 | 74 | 185 | 440 |
2 | 19 | F1(8, 10) = 10 228 | F1(27, 29) = 15 569 256 417 ≈ 1,55.1010 | F1(74, 76) ≈ 5,74.1024 | F1(185, 187) ≈ 3,67.1058 | F1(440, 442) ≈ 5,02.10135 |
Voir aussi
Article connexe
Crédit d'auteurs
(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Sudan function » (voir la liste des auteurs).
- Portail de la logique
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.