Groupe de Tits

En mathématiques, le groupe de Tits est un groupe simple fini d'ordre 17 971 200 = 211 · 33 · 52 · 13 nommé en l'honneur du mathématicien Jacques Tits. C'est le sous-groupe dérivé du groupe Ree . À strictement parler, le groupe de Tits lui-même n'est pas un groupe de type de Lie et en fait, il a été quelquefois considéré comme un groupe sporadique.

Le groupe de Tits peut être défini en termes de générateurs et de relations par

,

est le commutateur.

Son multiplicateur de Schur est trivial. Son groupe d'automorphismes est et son groupe d'automorphismes extérieurs est d'ordre 2, engendré par l'automorphisme qui envoie (a, b) sur (a, bbabababababbababababa).

Lien externe

(en) ATLAS of Group Representations - Le groupe de Tits


  • Portail de l’algèbre
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.