Inégalité de Bonse

En théorie des nombres, l'inégalité de Bonse, du nom de H. Bonse[1], permet une comparaison entre un nombre primoriel et le plus petit nombre premier qui ne figure pas dans sa décomposition.

Elle déclare que si p1, ..., pnpn+1 sont les n + 1 plus petits nombres premiers et n ≥ 4, alors

ou .

Elle est une conséquence facile du postulat de Bertrand :  ; en effet pour , le cas se montrant à la main.

Mais elle possède une démonstration élémentaire directe plus courte que celle du postulat de Bertrand [2].

Notes et références

(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Bonse's inequality » (voir la liste des auteurs).
  1. (de) H. Bonse, « Über eine bekannte Eigenschaft der Zahl 30 und ihre Verallgemeinerung », Archiv der Mathematik und Physik, vol. 3, no 12, , p. 292–295
  2. « Olympiades françaises de mathématiques », sur maths-olympiques.fr,

Bibliographie

  • (en) J. V. Uspensky (en) et M. A. Heaslet, Elementary Number Theory, New York, McGraw-Hill, , p. 87
  • (en) Shaohua Zhang, « A new inequality involving primes », (arXiv 0908.2943)
  • Arithmétique et théorie des nombres
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.