Indice de fixation
L'indice de fixation (FST), aussi appelé indice de différenciation, est un indice permettant de mesurer la différenciation des populations à partir du polymorphisme génétique. En général il est calculé à partir de SNP ou de microsatellites.
Pour les articles homonymes, voir FST.
Estimation
Selon Hudson et al. (1992), on peut utiliser l’estimateur suivant pour calculer la :
où et représentent le nombre moyen de différences par paire entre deux individus échantillonnés à partir de sous-populations différentes () ou à partir de la même sous-population (). La différence moyenne par paire au sein d'une population peut être calculée comme la somme des différences par paire divisée par le nombre de paires. Cependant, cet estimateur est biaisé lorsque les tailles d'échantillon sont petites ou si elles varient entre les populations et des méthodes plus élaborées sont utilisées pour calculer FST dans la pratique.
Distance génétiques
Calculées à partir de marqueurs génétiques classiques
Dans leur étude The History and Geography of Human Genes (1994), Cavalli-Sforza, Menozzi et Piazza ont calculé les distances génétiques entre 42 populations à l'aide de 120 marqueurs génétiques classiques. La table ci-dessous montrent les résultats pour quelques populations [1] :
Fst (Cavalli 1994) | Africain de l'Ouest | Berbère | Indien | Iranien | Proche Orientaux | Japonais | Basque | Lappon | Sarde | Danois | Anglais | Grecque | Italien |
Africain de l'Ouest | 0 | 1642 | 1748 | 1796 | 1454 | 2252 | 1299 | 1689 | 2062 | 1459 | 1487 | 1356 | 1794 |
Berbère | 1642 | 0 | 497 | 408 | 263 | 1707 | 392 | 736 | 619 | 313 | 273 | 429 | 315 |
Indien | 1748 | 497 | 0 | 154 | 229 | 718 | 418 | 459 | 449 | 293 | 280 | 272 | 261 |
Iranien | 1796 | 408 | 154 | 0 | 158 | 1059 | 285 | 423 | 314 | 179 | 197 | 70 | 133 |
Proche-oriental | 1454 | 263 | 229 | 158 | 0 | 1056 | 246 | 423 | 329 | 238 | 236 | 129 | 208 |
Japonais | 2252 | 1707 | 718 | 1059 | 1056 | 0 | 1481 | 947 | 1558 | 1176 | 1244 | 1175 | 1145 |
Basque | 1299 | 392 | 418 | 285 | 246 | 1481 | 0 | 629 | 348 | 184 | 119 | 231 | 141 |
Lappon | 1689 | 736 | 459 | 423 | 423 | 947 | 629 | 0 | 667 | 334 | 404 | 308 | 339 |
Sarde | 2062 | 619 | 449 | 314 | 329 | 1558 | 348 | 667 | 0 | 348 | 340 | 190 | 221 |
Danois | 1459 | 313 | 293 | 179 | 238 | 1176 | 184 | 334 | 348 | 0 | 21 | 191 | 72 |
Anglais | 1487 | 273 | 280 | 197 | 236 | 1244 | 119 | 404 | 340 | 21 | 0 | 204 | 51 |
Grecque | 1356 | 429 | 272 | 70 | 129 | 1175 | 231 | 308 | 190 | 191 | 204 | 0 | 77 |
Italien | 1794 | 315 | 261 | 133 | 208 | 1145 | 141 | 339 | 221 | 72 | 51 | 77 | 0 |
Calculées à partir de SNPs
Europe (Nord-Américains) | Afrique sub-saharienne (Yoruba) | Asie de l'est (Chinois) | |
---|---|---|---|
Europe (Nord-Américains) | 0.1530 | 0.1100 | |
Afrique sub-saharienne (Yoruba) | 0.1530 | 0.1900 | |
Asie de l'est (Chinois) | 0.1100 | 0.1900 |
Italiens | Palestiniens | Suédois | Finlandais | Espagnols | Allemands | Russes | Français | Grecs | |
---|---|---|---|---|---|---|---|---|---|
Italiens | 0.0064 | 0.0064-0.0090 | 0.0130-0.0230 | 0.0010-0.0050 | 0.0029-0.0080 | 0.0088-0.0120 | 0.0030-0.0050 | 0.0000 | |
Palestiniens | 0.0064 | 0.0191 | 0.0101 | 0.0136 | 0.0202 | 0.0057 | |||
Suédois | 0.0064-0.0090 | 0.0191 | 0.0050-0.0110 | 0.0040-0055 | 0.0007-0.0010 | 0.0030-0.0036 | 0.0020 | 0.0084 | |
Finlandais | 0.0130-0.0230 | 0.0050-0.0110 | 0.0110-0.0170 | 0.0060-0.0130 | 0.0060-0.0120 | 0.0080-0.0150 | |||
Espagnols | 0.0010-0.0050 | 0.0101 | 0.0040-0055 | 0.0110-0.0170 | 0.0015-0.0030 | 0.0070-0.0079 | 0.0010 | 0.0035 | |
Allemands | 0.0029-0.0080 | 0.0136 | 0.0007-0.0010 | 0.0060-0.0130 | 0.0015-0.0030 | 0.0030-0.0037 | 0.0010 | 0.0039 | |
Russes | 0.0088-0.0120 | 0.0202 | 0.0030-0.0036 | 0.0060-0.0120 | 0.0070-0.0079 | 0.0030-0.0037 | 0.0050 | 0.0108 | |
Français | 0.0030-0.0050 | 0.0020 | 0.0080-0.0150 | 0.0010 | 0.0010 | 0.0050 | |||
Grecs | 0.0000 | 0.0057 | 0.0084 | 0.0035 | 0.0039 | 0.0108 | |||
Programmes permettant de calculer les FST
Bibliographie
- Kent E. Holsinger and Bruce S. Weir, Genetics in geographically structured populations: defining, estimating and interpreting FST, University of Connecticut Year 2009
Notes
- Luigi Luca Cavalli-Sforza, Paolo Menozzi, Alberto Piazza, The History and Geography of Human Genes, Princeton University Press, 1994, p.75
- Nelis et al. 2009, Genetic Structure of Europeans: A View from the North–East
- C.Tian et al. 2009, European Population Genetic Substructure: Further Definition of Ancestry Informative Markers for Distinguishing among Diverse European Ethnic Groups
- Deux valeurs séparées par un tiret signifient respectivement les distances minimales et maximales observées entre deux populations. Par exemple la distance 0.0130-0.0230 entre Finlandais et Italiens varie en fonction des régions de ces deux pays. La distance maximale observée (0.0230) étant entre le sud de l'Italie et le nord de la Finlande (Kuusamo) et la distance minimale (0.0130) entre le nord de l'Italie et le sud de la Finlande (Helsinki).
- (en) Nicholas G. Crawford, « smogd: software for the measurement of genetic diversity », Molecular Ecology Resources, vol. 10, no 3, , p. 556–557 (PMID 21565057, DOI 10.1111/j.1755-0998.2009.02801.x)
- Portail de la biologie