Lemme de Schreier

En mathématiques, le lemme de Schreier est un résultat de théorie des groupes permettant, à partir d'une partie génératrice d'un groupe et d'une transversale d'un sous-groupe, de construire une partie génératrice de ce sous-groupe.

Pour les articles homonymes, voir Schreier.

Énoncé

Soient :

  • un groupe ;
  • une partie génératrice de  ;
  • un sous-groupe de  ;
  • une transversale à droite de dans , contenant l'élément neutre.

Pour tout élément g de , on note g l'élément de qui a même classe à droite :

.

Alors, est engendré par le sous-ensemble

.

Exemple

Si est d'indice 2 dans , alors contient au moins un , et on peut prendre comme transversale . On peut de plus se ramener au cas où est le seul élément de qui n'appartient pas à (en remplaçant les autres par leur produit par ). On calcule alors

est donc engendré par joint aux éléments de et à leurs conjugués par .

Applications

Source

(en) Marshall Hall, Jr., The Theory of Groups [détail des éditions], p. 96-97 (à ceci près que Hall appelle classes à gauche nos classes à droite)

  • Portail de l’algèbre
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.