Grande limnée

Lymnaea stagnalis

Ne pas confondre cette espèce avec la Limnée tronquée] (Galba trunculata), appelée aussi « petite limnée ».

La Grande limnée (Lymnaea stagnalis) ou Limnée stagnale, est un escargot pulmoné d'eau douce qui mesure de 5 à cm. C'est la plus grande espèce de son genre. Comme la quasi-totalité des escargots aquatiques cette espèce est hermaphrodite. Deux individus suffisent à fonder une descendance et c'est un animal très prolifique. Il ne possède pas d'opercule. La coquille d'une limnée morte perd rapidement sa couleur brune. Elle devient rapidement translucide (voir photo).

Biologie

La Grande limnée doit régulièrement venir respirer en surface.
Grande limnée se déplaçant sous la surface de l'eau.
Lymnaea stagnalis avec Physa fontinalis.
Ponte de Lymnaea stagnalis sous une feuille de Potamogeton natans.

Cette limnée doit périodiquement venir respirer de l'air en surface par une trompe extensible qui communique avec son poumon (pneumostome).

Elle vit à une température de 0 à 25 °C.

Sa grande coquille à 7 ou 8 spires, dextrogyre, fragile, peut se couvrir d'algues qui assurent son camouflage.
Elle peut aussi comme d'autres espèces « ramper » la tête en bas sous la surface de l'eau en étalant un large pied ovale pour se nourrir du biofilm, en montrant ses deux tentacules triangulaires et aplatis.

Parasitoses

Comme tous les gastéropodes aquatiques, cette espèce est souvent porteuse d'une ou plusieurs espèces de microbes et de parasites[1],[2],[3].

État, pression et menaces pour les populations de Grandes limnées

L'état des populations de cette espèce ne semble pas avoir fait l'objet d'évaluation européenne ou nationales. L'espèce comme tous les invertébrés et vertébrés aquatiques pourraient être vunérable à certaines pesticides ou cocktails de pesticides fréquemment retrouvés dans les eaux douces superficielles[4]

Utilisations

  • Facile à élever en microcosmes[5], en bassins ou aquarium, c'est une espèce modèle utilisée en laboratoire par exemple en neurologie et éthologie[6] ou encore en écotoxicologie[7],[8],[9], y compris au stade embryon[10]. L'espèce a notamment fait l'objet d'études concernant ses moyens de défense contre les microbes[11]
  • Archéologie, paléontologie : des débris de coquilles de limnées indiquent la présence ancienne de zones humides[12]. En 2006, Bobango & al. proposent d'utiliser certaines de ses protéines pour produire de nouveaux insecticides[13]. Sunada & al (2016)[14] ont étudié certains effets du stress thermique sur cette espèce (notamment via la méthylation de l'ADN). Forest & al (2016) l'ont utilisé pour étudier sa mémoire de moyen et long terme [15].
  • Aquariophilie : C'est un gastéropode racleur, mangeur d'algues mais aussi de plantes. Il peut être porteur de plusieurs parasites, dont Fasciola hepatica et divers trématodes[16]. Pour ces raisons il n'est généralement pas introduit dans les aquariums d'eau douce et froide. En outre, dépourvu d'opercule, il peut être victime du reste de la population d'un aquarium si la nourriture vient à manquer.

Ecotoxicologie

Les mollusques aquatiques (qui sont hermaphrodites et pourraient donc répondre différemment que d'autres groupes d'espèces à certains produits écotoxiques, perturbateurs endocriniens notamment), ont longtemps été oubliés parmi les espèces testées face aux effets (sur la reproduction et la survie notamment) d'expositions prolongées aux produits chimiques.
Lymnaea stagnalis, facile à trouver, à observer et élever en laboratoire (et qui se reproduit souvent) fait partie des espèces finalement choisies pour ce type d'évaluation[17].

Voir aussi

Références taxonomiques

Bibliographie

Notes et références

  1. Vignoles, P., Rondelaud, D., & Dreyfuss, G. (2016). Aptitude of Lymnaea palustris and L. stagnalis to Fasciola hepatica larval development through the infection of several successive generations of 4-mm-high snails. Parasitology research, 115(6), 2263-2268 (résumé).
  2. Dreyfuss, G., Vignoles, P., & Rondelaud, D. (2016). Pseudosuccinea columella: experimental co-infections of juvenile and pre-adult snails with the digeneans Calicophoron daubneyi and Fasciola hepatica. Journal of helminthology, 1-7.
  3. Soldánová, M., Selbach, C., & Sures, B. (2016). The early worm catches the bird? Productivity and patterns of Trichobilharzia szidati cercarial emission from Lymnaea stagnalis. PloS one, 11(2), e0149678.
  4. Tufi, S., Wassenaar, P. N., Osorio, V., De Boer, J., Leonards, P. E., & Lamoree, M. H. (2016). Pesticide Mixture Toxicity in Surface Water Extracts in Snails (Lymnaea stagnalis) by an in Vitro Acetylcholinesterase Inhibition Assay and Metabolomics. Environmental science & technology, 50(7), 3937-3944.
  5. Van de Perre, D., Roessink, I., Janssen, C. R., Smolders, E., Van Regenmortel, T., Van Wichelen, J., ... & De Schamphelaere, K. A. (2016). The effects of zinc on the structure and functioning of a freshwater community: A microcosm experiment. Environmental Toxicology and Chemistry (résumé).
  6. Takigami, S., Sunada, H., Lukowiak, K., Ito, E., & Sakakibara, M. (2016). An automated learning apparatus for classical conditioning of Lymnaea stagnalis. Journal of Neuroscience Methods, 259, 115-121.
  7. Besser, J. M., Dorman, R. A., Hardesty, D. L., & Ingersoll, C. G. (2016). Survival and Growth of Freshwater Pulmonate and Nonpulmonate Snails in 28-Day Exposures to Copper, Ammonia, and Pentachlorophenol. Archives of environmental contamination and toxicology, 70(2), 321-331 (résumé).
  8. Lance, E., Desprat, J., Holbech, B. F., Gérard, C., Bormans, M., Lawton, L. A., ... & Wiegand, C. (2016). Accumulation and detoxication responses of the gastropod Lymnaea stagnalis to single and combined exposures to natural (cyanobacteria) and anthropogenic (the herbicide RoundUp® Flash) stressors. Aquatic Toxicology, 177, 116-124 (résumé).
  9. Atli, G., & Grosell, M. (2016). Characterization and response of antioxidant systems in the tissues of the freshwater pond snail (Lymnaea stagnalis) during acute copper exposure. Aquatic Toxicology, 176, 38-44 (résumé).
  10. Hallett, K. C., Atfield, A., Comber, S., & Hutchinson, T. H. (2016). Developmental toxicity of metaldehyde in the embryos of Lymnaea stagnalis (Gastropoda: Pulmonata) co-exposed to the synergist piperonyl butoxide. Science of The Total Environment, 543, 37-43 (résumé).
  11. Gauri, S. S., Bera, C. K., Bhattacharyya, R., & Mandal, S. M. (2016). Identification of an antimicrobial peptide from large freshwater snail (Lymnaea stagnalis): activity against antibiotics resistant Staphylococcus epidermidis. Int. J. Exp. Res. Rev, 2, 5-9.
  12. Ghannem, N., Tlili, F., Riahi, C., & Regaya, K. (2016). Étude sédimentologique des dépôts carbonatés continentaux de type palustre de la région de Tajerouine, Nord-Ouest de la Tunisie. Carnets Geol., 16(04), 43
  13. Bobango, J., Wensel, S., Talley, I., & Talley, T. T. (2016). Engineered Acetylcholine Binding Proteins for Structure-guided Design of Safer Insecticides. The FASEB Journal, 30(1 Supplement), 1187-10.
  14. Sunada, H., Riaz, H., de Freitas, E., Lukowiak, K., Swinton, C., Swinton, E., ... & Lukowiak, K. (2016). Heat stress enhances LTM formation in Lymnaea : role of HSPs and DNA methylation. Journal of Experimental Biology, 219(9), 1337-1345
  15. Forest, J., Sunada, H., Dodd, S., & Lukowiak, K. (2016) Training Lymnaea in the presence of a predator scent results in a long-lasting ability to form enhanced long-term memory. Journal of Comparative Physiology A, 202(6), 399-409< (résumé)
  16. Faltýnková, A., Sures, B., & Kostadinova, A. (2016). Biodiversity of trematodes in their intermediate mollusc and fish hosts in the freshwater ecosystems of Europe. Systematic parasitology, 93(3), 283-293 (résumé).
  17. Essai n° 243: Essai de reproduction chez Lymnaea stagnalis? OCDE |DOI:https://dx.doi.org/10.1787/9789264264342-fr
  • Portail des mollusques et de la malacologie
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.