Loi inverse-χ²

En théorie des probabilités et en statistique, la loi inverse- (ou loi du inverse) est la loi de probabilité[1] de la variable aléatoire dont l'inverse suit une loi du χ². Une variante par changement d'échelle existe également.

Loi inverse-χ2

Densité de probabilité


Fonction de répartition

Paramètres
Support
Densité de probabilité
Fonction de répartition
Espérance pour
Mode
Variance pour
Asymétrie pour
Kurtosis normalisé pour
Entropie
Fonction génératrice des moments
Fonction caractéristique

Cette loi est utilisée en inférence statistique. Si X suit une loi inverse-χ2, on notera : .

Définition

Si X suit une loi du χ² à degrés de liberté, alors est de loi inverse-χ2 à degrés de liberté.

Sa densité de probabilité est donnée par :

est la fonction gamma et est appelé le nombre de degrés de liberté.

Variante

Une variante de la loi inverse-χ2 existe, par un changement d'échelle. C'est la loi de lorsque X suit une loi du χ² à degrés de liberté. La densité de probabilité est alors donnée par :

Le degré de liberté est encore .

Liens avec d'autres lois

  • loi du χ² : Si , alors .
  • la loi inverse-χ2 est la loi inverse-gamma avec et .

Références

  1. Bernardo, J.M.; Smith, A.F.M. (1993) Bayesian Theory,Wiley (pages 119, 431) (ISBN 0-471-49464-X)

Voir aussi

Liens externes

  • Portail des probabilités et de la statistique
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.