Matrice unitaire

En algèbre linéaire, une matrice carrée U à coefficients complexes est dite unitaire si elle vérifie les égalités :

où la matrice adjointe de U est notée U* (ou U en physique, et plus particulièrement en mécanique quantique) et I désigne la matrice identité.

L'ensemble des matrices unitaires de taille n forme le groupe unitaire U(n).

Les matrices unitaires carrées à coefficients réels sont les matrices orthogonales.

Propriétés

Toute matrice unitaire U vérifie les propriétés suivantes :

Propositions équivalentes

Soit U une matrice carrée de taille n à coefficients complexes ; les cinq propositions suivantes sont équivalentes :

Cas particuliers

Les matrices unités sont des matrices unitaires.

Référence

(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Unitary matrix » (voir la liste des auteurs).

Voir aussi

Bibliographie

  • Éric J. M. Delhez, Algèbre, vol. 1
  • Joseph Grifone, Algèbre linéaire, Cépaduès-Éditions,

Articles connexes

  • Portail de l’algèbre
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.