Matrice unitaire
En algèbre linéaire, une matrice carrée U à coefficients complexes est dite unitaire si elle vérifie les égalités :
où la matrice adjointe de U est notée U* (ou U† en physique, et plus particulièrement en mécanique quantique) et I désigne la matrice identité.
L'ensemble des matrices unitaires de taille n forme le groupe unitaire U(n).
Les matrices unitaires carrées à coefficients réels sont les matrices orthogonales.
Propriétés
Toute matrice unitaire U vérifie les propriétés suivantes :
- son déterminant est de module 1 ;
- ses vecteurs propres sont orthogonaux ;
- U est diagonalisable : où V est une matrice unitaire et D est une matrice diagonale et unitaire ;
- U peut s'écrire sous la forme d'une exponentielle d'une matrice : où i est l'unité imaginaire et H est une matrice hermitienne.
- U est normale.
Propositions équivalentes
Soit U une matrice carrée de taille n à coefficients complexes ; les cinq propositions suivantes sont équivalentes :
- U est unitaire ;
- U* est unitaire ;
- U est inversible et son inverse est U* ;
- les colonnes de U forment une base orthonormale pour le produit hermitien canonique sur ℂn ;
- U est normale et ses valeurs propres sont de module 1.
Cas particuliers
Les matrices unités sont des matrices unitaires.
Référence
(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Unitary matrix » (voir la liste des auteurs).
Voir aussi
Bibliographie
- Éric J. M. Delhez, Algèbre, vol. 1
- Joseph Grifone, Algèbre linéaire, Cépaduès-Éditions,
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.