Ovale de Cassini
En mathématiques, un ovale de Cassini est un ensemble de points du plan tel que le produit des distances de chaque point p de l'ovale à deux autres points fixés q1 et q2 est constant, c’est-à-dire de telle sorte que le produit
soit constant. Les points q1 et q2 sont appelés les foyers de l'ovale.
Les ovales de Cassini sont nommés d'après Giovanni Domenico Cassini.
Si l'on note b2 le produit constant qui précède, et a celle-ci:
La forme de l'ovale dépend du rapport b/a.
- Si b/a est plus grand que 1, le lieu est une boucle simple et continue.
- Si b/a est plus petit que 1, le lieu est composé de deux boucles non sécantes.
- Si b/a est égal à 1, le lieu est une lemniscate de Bernoulli.
Équations
Si les foyers des ovales sont (a, 0) et (−a, 0), alors l'équation de la courbe est donnée par
Ou, en coordonnées polaires
Propriétés
Trajectoires orthogonales
Les ovales de Cassini sont les trajectoires orthogonales aux hyperboles équilatères, de centre (0, 0) et passant par le point (1, 0).
En effet, les équations de telles hyperboles sont
Leur équation différentielle s'écrit ainsi :
Ce qui donne l'équation des trajectoires orthogonales :
Les trajectoires orthogonales sont donc d'équation
et on retrouve bien l'équation des ovales de Cassini.
Sections planes d'un tore
On obtient des ovales de Cassini par intersection d'un tore par un plan parallèle à son axe et à une distance égale au rayon du cercle générateur.
Voir détails en anglais.
Généralisations
On peut faire de même avec plus de 2 foyers, ou plus de 2 dimensions.
Voir détails en anglais.
Liens externes
- (en) Eric W. Weisstein, « Cassini Ovals », sur MathWorld
- Robert Ferréol, « Ovale de Cassini », sur Encyclopédie des formes mathématiques remarquables
- Portail de la géométrie