Représentations de e
Cet article porte sur les représentations du nombre e, une importante constante mathématique.
Elle peut être définie de différentes manières en tant que nombre réel. Puisque e est un nombre irrationnel, elle ne peut être représentée par une fraction ordinaire, mais bien par une fraction continue. En s'appuyant sur les résultats du calcul infinitésimal, e peut aussi être calculée à partir d'une série infinie, d'un produit infini et de plusieurs limites de suite.
Comme fraction continue
La constante e peut être représentée comme fraction continue simple (une démonstration est proposée dans l'article « Fraction continue et approximation diophantienne ». Voir aussi la suite A003417 de l'OEIS) :
Voici quelques fractions continues généralisées (en notation de Pringsheim). La deuxième est déduite de la première par conversion. La troisième, qui converge très rapidement, est un cas particulier de la quatrième.
Comme séries infinies
La constante e est aussi égale à la somme de ces séries[1] :
- où Bn est le n-ième nombre de Bell.
Comme produit infini
La constante e est aussi donnée par plusieurs produits infinis, dont le produit de Pippenger :
et le produit de Guillera[2]
où le n-ième facteur est la racine n-ième du produit
Il y a aussi les produits infinis
et
Comme limite d'une suite
La constante e est égale à plusieurs limites de suites :
- (par la formule de Stirling).
La limite symétrique[3] :
peut être obtenue en manipulant la limite de base de e.
Une autre limite[4] :
où est le n-ième nombre premier et est sa primorielle.
Probablement la limite la plus connue :
- .
Notes et références
- Pour les séries 2 à 7, voir (en) Harlan J. Brothers (en), « Improving the convergence of Newton's series approximation for e », College Mathematics Journal (en), vol. 35, no 1, , p. 34-39 (lire en ligne).
- (en) Jonathan Sondow, « A Faster Product for π and a New Integral for ln π/2 », Amer. Math. Monthly, vol. 112, , p. 729-734 (lire en ligne).
- (en) Harlan J. Brothers et John A. Knox (en), « New Closed-Form Approximations to the Logarithmic Constant e », The Mathematical Intelligencer, vol. 20, no 4, , p. 25-29 (lire en ligne).
- (en) Sebastián Martín Ruiz, « A Result on Prime Numbers », Math. Gaz., vol. 81, , p. 269-270.
- Portail des mathématiques
- Portail de l’algèbre