Variable antithétique

Les variables antithétiques sont une des techniques de réduction de la variance employées dans la méthode de Monte-Carlo. Il s'agit de tirer parti de certaines symétries d'une distribution et de la corrélation négative entre deux variables aléatoires.

Principe

On souhaite estimer , où X est une variable aléatoire et désigne son espérance mathématique. La méthode de Monte-Carlo de base consiste à simuler n variables iid selon la loi de X, disons X1, X2, ... ,Xn, puis à estimer θ par

.

On peut avoir une idée de l'erreur commise en construisant un intervalle de confiance ; ce dernier nécessite un estimateur de la variance de l'estimateur .

Supposons que l'on dispose de deux échantillons de taille n ; le premier est noté X1, X2, ... ,Xn et le second X'1, X'2, ... ,X'n. Pour simplifier les notations, on pose m1, m2 les estimateurs empiriques de l'espérance de h(X) sur respectivement l'échantillon 1 et 2. Autrement dit, on aura

et

.

L'estimateur Monte-Carlo sur l'échantillon complet est simplement

et, du point de vue de la variance :

.

Dans le cas iid, la covariance s'annule et (seulement vrai quand n → ∞) , si bien que  : le facteur 2 s'explique car on a doublé la taille de l'échantillon.

La technique de la variable antithétique consiste à choisir l'échantillon 2 identiquement distribué selon la loi de X mais en renonçant à l'indépendance, plus précisément en s'arrangeant pour que . Il faut donc exploiter les éléments de symétrie de la loi de X afin de construire le second échantillon à partir du premier, en s'assurant de la négativité de la covariance. Ce faisant, la variance sera inférieure à la variance "normale" .

Par exemple, si la loi de X est la loi uniforme sur [0;1], le premier échantillon sera simplement u1, u2, ... ,un, où pour tout i, ui est tirée selon . On construit le second échantillon u'1, u'2, ... ,u'n, en posant pour tout i: u'i = 1–ui. Si les ui sont uniformes sur [0;1], alors il en va de même pour les u'i. De plus, la covariance est négative, ce qui permet de réduire la variance initiale.

Un autre exemple concerne la loi normale . En appliquant la transformation x'i = 2μxi, où , on obtient un tirage dans , qui est négativement corrélé avec le premier tirage xi

Exemple : estimation d'une intégrale

On souhaite estimer

.

La valeur exacte est . Cette intégrale peut se voir comme l'espérance de f (U), où

et U distribuée selon une loi uniforme sur [0;1].

On compare l'estimateur Monte-Carlo classique (échantillon de taille 2n, avec n = 1500, tiré selon la loi uniforme standard) à l'estimateur avec variable antithétique (échantillon de taille n, complété par l'échantillon transformé 1–ui). La variance se réduit comme suit

Estimation Variance
Méthode classique 0,69365 0,02005
Variable antithétique 0,69399 0,00063

On constate une très nette réduction de la variance dans le cas de l'utilisation d'une variable antithétique.

Notes et références

Bibliographie

  • M. Hammersley et K. W. Morton, A new Monte Carlo technique antithetic variates, Proc. Camb. Phil. Soc., 52, 449, 1956.

Liens externes

  • Portail des probabilités et de la statistique
  • Portail de la physique
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.