Polish notation
English
Etymology
After the nationality of the logician Jan Łukasiewicz
Noun
- (arithmetic, logic) A notation for arithmetic (and logical) formulae in which operations (respectively, quantifiers and operands) are written immediately before their operands, used to avoid the need for parentheses; for example, 3 * (4 + 7) is written as * 3 + 4 7 and A AND B is written as AND A B.
-
- In Polish Notation, the connectives are placed before the wffs. The virtue of this sentence is that its grammar is simpler, for it has no need for parentheses. Sider’s examples: (P ∧ Q) → R and P ∧ (Q → R) become → ∧PQR and ∧P → QR.
If you actually look at a text in this tradition, you’ll find something slightly different. “C” stands for “consequence”, i.e., implication (→) and “N” for negation (∼).
So,consider the following from Tarski and Łukasiewicz’s Investigations into the Sentential Calculus. The claim there is that there are three axioms:
‘CCpqCCqrCpr’
‘CCNppp’
‘CpCNpq’
- In Polish Notation, the connectives are placed before the wffs. The virtue of this sentence is that its grammar is simpler, for it has no need for parentheses. Sider’s examples: (P ∧ Q) → R and P ∧ (Q → R) become → ∧PQR and ∧P → QR.
-
Synonyms
Translations
notation for arithmetic formulae
|
|
This article is issued from Wiktionary. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.