Wishart distribution

English

Etymology

Named in honour of Scottish mathematician John Wishart, who formulated the distribution in 1928.

Noun

Wishart distribution (plural Wishart distributions)

  1. (statistics) A generalisation of the chi-square distribution to an arbitrary (integer) number of dimensions, or of the gamma distribution to a non-integer number of degrees of freedom.
    • 2006, Nhu D. Le, James V. Zidek, Statistical Analysis of Environmental Space-Time Processes, Springer, page 142,
      The novelty of this work lies in its incorporation of a general conjugate prior distribution for the covariance matrix, namely a generalized inverted Wishart distribution (GIW). As its name suggests, this distribution, discovered by Brown et al. (1994b) generalizes the well-known inverted Wishart distribution.
    • 2008, Martin Bilodeau, David Brenner, Theory of Multivariate Statistics, Springer page 85,
      The basic properties of Wishart distributions are studied in Section 7.3.
    • 2015, Sudharman K. Jayaweera, Signal Processing for Cognitive Radios, Wiley, page 459,
      Recall from Appendix B that the Wishart distribution is characterized by a positive definite matrix and the degrees of freedom .
This article is issued from Wiktionary. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.