Moles and Atoms
As introduced in the previous concept, the mole can be used to relate masses of substances to the quantity of atoms therein. This is an easy way of determining how much of one substance can react with a given amount of another substance.
From moles of a substance, one can also find the number of atoms in a sample and vice versa. The bridge between atoms and moles is Avogadro's number, 6.022×1023.
Avogadro's number is typically dimensionless, but when it defines the mole, it can be expressed as 6.022×1023 elementary entities/mol. This form shows the role of Avogadro's number as a conversion factor between the number of entities and the number of moles. Therefore, given the relationship 1 mol = 6.022 x 1023 atoms, converting between moles and atoms of a substance becomes a simple dimensional analysis problem.
Converting Moles to Atoms
Given a known number of moles (x), one can find the number of atoms (y) in this molar quantity by multiplying it by Avogadro's number:
For example, if scientists want to know how may atoms are in six moles of sodium (x = 6), they could solve:
Note that the solution is independent of whether the element is sodium or otherwise.
Converting Atoms to Moles
Reversing the calculation above, it is possible to convert a number of atoms to a molar quantity by dividing it by Avogadro's number:
This can be written without a fraction in the denominator by multiplying the number of atoms by the reciprocal of Avogadro's number:
For example, if scientists know there are