Determining Fossil Ages
Paleontology seeks to map out how life evolved across geologic time. A substantial hurdle is the difficulty of working out fossil ages. There are several different methods for estimating the ages of fossils, including:
- stratigraphy
- biostratigraphy
- carbon dating
Stratigraphy
Paleontologists rely on stratigraphy to date fossils. Stratigraphy is the science of understanding the strata, or layers, that form the sedimentary record. Strata are differentiated from each other by their different colors or compositions and are exposed in cliffs, quarries, and river banks. These rocks normally form relatively horizontal, parallel layers, with younger layers forming on top.
If a fossil is found between two layers of rock whose ages are known, the fossil's age is thought to be between those two known ages. Because rock sequences are not continuous, but may be broken up by faults or periods of erosion, it is difficult to match up rock beds that are not directly adjacent.
Sedimentary layers
The layers of sedimentary rock, or strata, can be seen as horizontal bands of differently colored or differently structured materials exposed in this cliff. The deeper layers are older than the layers found at the top, which aids in determining the relative age of fossils found within the strata.
Biostratigraphy
Fossils of species that survived for a relatively short time can be used to match isolated rocks: this technique is called biostratigraphy. For instance, the extinct chordate Eoplacognathus pseudoplanus is thought to have existed during a short range in the Middle Ordovician period. If rocks of unknown age have traces of E. pseudoplanus, they have a mid-Ordovician age. Such index fossils must be distinctive, globally distributed, and occupy a short time range to be useful. Misleading results can occur if the index fossils are incorrectly dated.
Relative Dating
Stratigraphy and biostratigraphy can in general provide only relative dating (A was before B), which is often sufficient for studying evolution. This is difficult for some time periods, however, because of the barriers involved in matching rocks of the same age across continents. Family-tree relationships can help to narrow down the date when lineages first appeared. For example, if fossils of B date to X million years ago and the calculated "family tree" says A was an ancestor of B, then A must have evolved earlier.
It is also possible to estimate how long ago two living branches of a family tree diverged by assuming that DNA mutations accumulate at a constant rate. However, these "molecular clocks" are sometimes inaccurate and provide only approximate timing. For example, they are not sufficiently precise and reliable for estimating when the groups that feature in the Cambrian explosion first evolved, and estimates produced by different approaches to this method may vary as well.
Carbon Dating
Together with stratigraphic principles, radiometric dating methods are used in geochronology to establish the geological time scale. Beds that preserve fossils typically lack the radioactive elements needed for radiometric dating ("radiocarbon dating" or simply "carbon dating"). The principle of radiocarbon dating is simple: the rates at which various radioactive elements decay are known, and the ratio of the radioactive element to its decay products shows how long the radioactive element has existed in the rock. This rate is represented by the half-life, which is the time it takes for half of a sample to decay.
Half-life of Carbon-14
Radiometric dating is a technique used to date materials such as rocks or carbon, usually based on a comparison between the observed abundance of a naturally occurring radioactive isotope and its decay products, using known decay rates.
The half-life of carbon-14 is 5,730 years, so carbon dating is only relevant for dating fossils less than 60,000 years old. Radioactive elements are common only in rocks with a volcanic origin, so the only fossil-bearing rocks that can be dated radiometrically are volcanic ash layers. Carbon dating uses the decay of carbon-14 to estimate the age of organic materials, such as wood and leather.